-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain-d0.py
542 lines (444 loc) · 17.6 KB
/
train-d0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import sys
import os
import argparse
import time
import numpy as np
from scipy.interpolate import interp1d
from scipy.interpolate import UnivariateSpline
import matplotlib
#matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pints
import torch
import torch.nn as nn
parser = argparse.ArgumentParser('IKr discrepancy fit with the candidate model.')
parser.add_argument('--method', type=str, choices=['dopri5', 'adams'], default='dopri5')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--myokit', action='store_true', help='Use Myokit for speed up.')
args = parser.parse_args()
from torchdiffeq import odeint
# Set random seed
np.random.seed(0)
torch.manual_seed(0)
device = 'cpu'
p0 = np.array([
# https://github.com/CardiacModelling/hERGRapidCharacterisation/blob/master/room-temperature-only/out/herg25oc1/herg25oc1-staircaseramp-B06-solution-542811797.txt
1.12592345582957387e-01 * 1e-3,
8.26751134920666146e+01 * 1e-3,
3.38768033864048357e-02 * 1e-3,
4.67106147665183542e+01 * 1e-3,
])
prediction_protocol = np.loadtxt('test-protocols/ap2hz.csv', skiprows=1, delimiter=',')
prediction_protocol[:, 0] *= 1e3 # s -> ms
prediction_t = torch.linspace(0., 3000, 1501).to(device)
raw_data1 = np.loadtxt('data/pr3-steady-activation-cell-5.csv', delimiter=',', skiprows=1)
raw_data2 = np.loadtxt('data/pr5-deactivation-cell-5.csv', delimiter=',', skiprows=1)
time1 = raw_data1[:, 0]
time1_torch = torch.from_numpy(raw_data1[:, 0]).to(device)
voltage1 = raw_data1[:, 2]
time2 = raw_data2[:, 0]
time2_torch = torch.from_numpy(raw_data2[:, 0]).to(device)
voltage2 = raw_data2[:, 2]
gt_true_y0s = [torch.tensor([[0., 0., 1., 0., 0., 0.]]).to(device), # what you get after holding at +40mV
torch.tensor([[0., 1., 0., 0., 0., 0.]]).to(device)] # (roughly) what you get after holding at -80mV
#
#
#
def makedirs(dirname):
if not os.path.exists(dirname):
os.makedirs(dirname)
makedirs('d0')
#
#
#
class Lambda(nn.Module):
def __init__(self):
super(Lambda, self).__init__()
# Best of 10 fits for data herg25oc1 cell B06 (seed 542811797)
self.p1 = 5.94625498751561316e-02 * 1e-3
self.p2 = 1.21417701632850410e+02 * 1e-3
self.p3 = 4.76436985414236425e+00 * 1e-3
self.p4 = 3.49383233960778904e-03 * 1e-3
self.p5 = 9.62243079990877703e+01 * 1e-3
self.p6 = 2.26404683824047979e+01 * 1e-3
self.p7 = 8.00924780462999131e+00 * 1e-3
self.p8 = 2.43749808069009823e+01 * 1e-3
self.p9 = 2.06822607368134157e+02 * 1e-3
self.p10 = 3.30791433507312362e+01 * 1e-3
self.p11 = 1.26069071928587784e+00 * 1e-3
self.p12 = 2.24844970727316245e+01 * 1e-3
def set_fixed_form_voltage_protocol(self, t, v):
# Regular time point voltage protocol time series
self._t_regular = t
self._v_regular = v
self.__v = interp1d(t, v)
def _v(self, t):
return torch.from_numpy(self.__v([t.cpu().numpy()])).to(device)
def voltage(self, t):
# Return voltage
return self._v(t).numpy()
def forward(self, t, y):
c1, c2, i, ic1, ic2, o = torch.unbind(y[0])
try:
v = self._v(t).to(device)
except ValueError:
v = torch.tensor([-80]).to(device)
a1 = self.p1 * torch.exp(self.p2 * v)
b1 = self.p3 * torch.exp(-self.p4 * v)
bh = self.p5 * torch.exp(self.p6 * v)
ah = self.p7 * torch.exp(-self.p8 * v)
a2 = self.p9 * torch.exp(self.p10 * v)
b2 = self.p11 * torch.exp(-self.p12 * v)
dc1dt = a1 * c2 + ah * ic1 + b2 * o - (b1 + bh + a2) * c1
dc2dt = b1 * c1 + ah * ic2 - (a1 + bh) * c2
didt = a2 * ic1 + bh * o - (b2 + ah) * i
dic1dt = a1 * ic2 + bh * c1 + b2 * i - (b1 + ah + a2) * ic1
dic2dt = b1 * ic1 + bh * c2 - (ah + a1) * ic2
dodt = a2 * c1 + ah * i - (b2 + bh) * o
return torch.stack([dc1dt[0], dc2dt[0], didt[0], dic1dt[0], dic2dt[0], dodt[0]])
if args.myokit:
try:
import myokit
except ModuleNotFoundError:
# Install myokit
import subprocess
import sys
def install(package):
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
install('myokit')
import myokit
#
# Time out handler
#
class Timeout(myokit.ProgressReporter):
"""
A :class:`myokit.ProgressReporter` that halts the simulation after
``max_time`` seconds.
"""
def __init__(self, max_time):
self.max_time = float(max_time)
def enter(self, msg=None):
self.b = myokit.Benchmarker()
def exit(self):
pass
def update(self, progress):
return self.b.time() < self.max_time
class Model(pints.ForwardModel):
"""
# A voltage clamp model linking Myokit and Pints ForwardModel.
"""
def __init__(self, max_evaluation_time=60):
"""
# max_evaluation_time: maximum time (in second) allowed for one
# simulate() call.
"""
self._model = myokit.parse_model('''
[[model]]
# Initial values
ikr.act = 0
ikr.rec = 1
# Simulation engine variables
[engine]
time = 0 [ms]
bind time
# Membrane potential
[membrane]
V = 0 [mV]
bind pace
label membrane_potential
[nernst]
EK = -86 [mV]
# Hodgkin-Huxley current model
[ikr]
use membrane.V
IKr = g * act * rec * (V - nernst.EK)
in [nA]
dot(act) = (inf - act) / tau
inf = k1 * tau
tau = 1 / (k1 + k2)
in [ms]
k1 = p1 * exp(p2 * V)
in [1/ms]
k2 = p3 * exp(-p4 * V)
in [1/ms]
dot(rec) = (inf - rec) / tau
inf = k4 * tau
tau = 1 / (k3 + k4)
in [ms]
k3 = p5 * exp(p6 * V)
in [1/ms]
k4 = p7 * exp(-p8 * V)
in [1/ms]
# https://github.com/CardiacModelling/hERGRapidCharacterisation/blob/master/room-temperature-only/out/herg25oc1/herg25oc1-staircaseramp-B06-solution-542811797.txt
p1 = 1.12592345582957387e-01 * 1e-3 [1/ms]
p2 = 8.26751134920666146e+01 * 1e-3 [1/mV]
p3 = 3.38768033864048357e-02 * 1e-3 [1/ms]
p4 = 4.67106147665183542e+01 * 1e-3 [1/mV]
# Best of 10 fits (M10) for data herg25oc1 cell B06 (seed 542811797)
p5 = 9.62243079990877703e+01 * 1e-3 [1/ms]
p6 = 2.26404683824047979e+01 * 1e-3 [1/mV]
p7 = 8.00924780462999131e+00 * 1e-3 [1/ms]
p8 = 2.43749808069009823e+01 * 1e-3 [1/mV]
p9 = 1 [uS]
g = p9
''')
self._vhold = -80
# maximum time allowed
self.max_evaluation_time = max_evaluation_time
# Create simulation protocol
self.simulation = myokit.Simulation(self._model)
self.simulation.set_tolerance(1e-6, 1e-8)
# self.simulation.set_max_step_size(1e-2) # ms
# Init states
self.init_state = self.simulation.state()
def n_parameters(self):
return 4
def set_init_state(self, v):
self.init_state = v
def set_voltage_protocol(self, p, prt_mask=None):
# Assume protocol p is
# [step_1_voltage, step_1_duration, step_2_voltage, ...]
# prt_mask: (numpy) mask function that remove part of the measurement;
# can be used as a capacitive filter, or to make the fitting
# harder
protocol = myokit.Protocol()
duration = 0
for i in range(len(p) // 2):
protocol.add_step(p[2 * i], p[2 * i + 1])
duration += p[2 * i + 1]
self.simulation.set_protocol(protocol)
del(protocol)
self.prt_mask = prt_mask
def set_fixed_form_voltage_protocol(self, t, v, prt_mask=None):
# v, t: voltage, time to be set in ms, mV
# prt_mask: (numpy) mask function that remove part of the measurement;
# can be used as a capacitive filter, or to make the fitting
# harder
self.simulation.set_fixed_form_protocol(
t, v # ms, mV
)
self.prt_mask = prt_mask
def simulate(self, parameters, times):
# simulate() method for Pints
p1, p2, p3, p4 = parameters
self.simulation.set_constant('ikr.p1', p1)
self.simulation.set_constant('ikr.p2', p2)
self.simulation.set_constant('ikr.p3', p3)
self.simulation.set_constant('ikr.p4', p4)
# Reset to ensure each simulate has same init condition
self.simulation.reset()
self.simulation.set_state(self.init_state)
# Run!
try:
p = Timeout(self.max_evaluation_time)
d = self.simulation.run(np.max(times)+1e-3,
log_times=times,
log=['ikr.IKr'],
progress=p,
).npview()
del(p)
except (myokit.SimulationError, myokit.SimulationCancelledError):
return np.full(times.shape, float('inf'))
# Apply capacitance filter and return
if self.prt_mask is not None:
fcap = np.zeros(times.shape)
fcap[self.prt_mask] = 1
d['ikr.IKr'] = d['ikr.IKr'] * self.fcap
return d['ikr.IKr']
else: # use torchdiffeq odeint
#
# Timer
#
import signal
from contextlib import contextmanager
class TimeoutException(Exception): pass
@contextmanager
def time_limit(seconds):
def signal_handler(signum, frame):
raise TimeoutException('Simulation time out.')
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0)
class ODEFunc(nn.Module):
def __init__(self):
super(ODEFunc, self).__init__()
self.p1 = 1.13e-4
self.p2 = 7.45e-2
self.p3 = 3.60e-5
self.p4 = 4.49e-2
# Best of 10 fits (M10) for data herg25oc1 cell B06 (seed 542811797)
self.p5 = 9.62243079990877703e+01 * 1e-3
self.p6 = 2.26404683824047979e+01 * 1e-3
self.p7 = 8.00924780462999131e+00 * 1e-3
self.p8 = 2.43749808069009823e+01 * 1e-3
self.unity = torch.tensor([1]).to(device)
def set_parameters(self, x):
#self.p1, self.p2, self.p3, self.p4, self.p5, self.p6, self.p7, self.p8 = x
self.p1, self.p2, self.p3, self.p4 = x
def set_fixed_form_voltage_protocol(self, t, v):
# Regular time point voltage protocol time series
self._t_regular = t
self._v_regular = v
self.__v = interp1d(t, v)
def _v(self, t):
#return torch.from_numpy(np.interp([t.cpu().detach().numpy()], self._t_regular,
# self._v_regular))
#return self.__v([t.cpu().detach().numpy()])
return torch.from_numpy(self.__v([t.cpu().detach().numpy()]))
def voltage(self, t):
# Return voltage
return self._v(t).numpy()
def forward(self, t, y):
a, r = torch.unbind(y, dim=1)
try:
v = self._v(t).to(device)
except ValueError:
v = torch.tensor([-80]).to(device)
k1 = self.p1 * torch.exp(self.p2 * v)
k2 = self.p3 * torch.exp(-self.p4 * v)
k3 = self.p5 * torch.exp(self.p6 * v)
k4 = self.p7 * torch.exp(-self.p8 * v)
dadt = k1 * (self.unity - a) - k2 * a
drdt = -k3 * r + k4 * (self.unity - r)
return torch.stack([dadt[0], drdt[0]]).reshape(1, -1)
class Model(pints.ForwardModel):
def __init__(self, ode_func=None):
super(Model, self).__init__()
if ode_func is None:
self._ode = ODEFunc().to(device)
else:
self._ode = ode_func
self.set_y0()
self.set_voltage_protocol_batches()
self.set_discontinous()
def n_parameters(self):
#return 9
return 4
def n_outputs(self):
if self._ps is not None:
return len(self._ps)
else:
return 1
def set_fixed_form_voltage_protocol(self, t, v):
self._ode.set_fixed_form_voltage_protocol(t, v)
def set_voltage_protocol_batches(self, ps=None):
"ps: list of voltage time series [times, voltages]"
self._ps = ps
def set_y0(self, y0=np.asarray([0, 1])):
self._y0 = y0.reshape(1, -1)
self._y0_torch = torch.from_numpy(self._y0).float()
def set_discontinous(self, discontn=None):
if discontn is not None:
self.discontn = torch.from_numpy(discontn)
else:
self.discontn = discontn
def simulate(self, x, t):
"Pints's forward simulation, x parameters, t time series"
t = torch.from_numpy(np.copy(t))
#g = x[0]
g = 1
#self._ode.set_parameters(x[1:])
self._ode.set_parameters(x[:])
if self._ps is not None:
out = []
for p in self._ps:
self.set_fixed_form_voltage_protocol(p[:, 0], p[:, 1])
try:
with time_limit(600):
o = odeint(self._ode, self._y0_torch, t, method='dopri5')
out.append((g * o[:, 0, 0] * o[:, 0, 1] * (self._ode._v(t).to(device) + 86)).cpu().detach().numpy().reshape(-1))
except TimeoutException as e:
out.append(np.ones(t.shape) * np.inf)
return np.asarray(out).T
else:
try:
with time_limit(600):
o = odeint(self._ode, self._y0_torch, t, method='dopri5', options={"grid_points": self.discontn, "eps": 1e-6})
except TimeoutException as e:
return np.ones(t.shape) * np.inf
return (g * o[:, 0, 0] * o[:, 0, 1] * (self._ode._v(t).to(device) + 86)).cpu().detach().numpy().reshape(-1)
#
#
#
if args.debug:
if args.myokit:
model = Model()
else:
func = ODEFunc().to(device)
model = Model(func)
model.set_fixed_form_voltage_protocol(time1, voltage1)
o = model.simulate(p0, time1)
print(o.shape)
l = int(len(time1) / 7)
for i in range(7):
plt.plot(time1[:l], o[l*i:l*(i+1)])
plt.show()
#
# Generate syn data from the ground truth model
#
true_model = Lambda()
with torch.no_grad():
true_y0 = gt_true_y0s[1]
true_model.set_fixed_form_voltage_protocol(time1, voltage1)
true_y = odeint(true_model, true_y0, time1_torch, method='dopri5')
true_yo_batches1 = (true_y[:, 0, -1] * (true_model._v(time1_torch) + 86)).cpu().numpy().reshape(-1)
true_model.set_fixed_form_voltage_protocol(time2, voltage2)
true_y = odeint(true_model, true_y0, time2_torch, method='dopri5')
true_yo_batches2 = (true_y[:, 0, -1] * (true_model._v(time2_torch) + 86)).cpu().numpy().reshape(-1)
# ap 2hz for prediction
true_y0 = gt_true_y0s[1]
true_model.set_fixed_form_voltage_protocol(prediction_protocol[:, 0], prediction_protocol[:, 1])
prediction_y = odeint(true_model, true_y0, prediction_t, method='dopri5')
prediction_yo = prediction_y[:, 0, -1] * (true_model._v(prediction_t) + 86)
if __name__ == '__main__':
ii = 0
noise_sigma = 0.1
timet = np.append(time1, time1[-1] + time2[1] + time2)
voltaget = np.append(voltage1, voltage2)
datat = np.append(true_yo_batches1, true_yo_batches2)
datat += np.random.normal(0, noise_sigma, datat.shape)
if args.myokit:
model = Model()
else:
func = ODEFunc().to(device)
model = Model(func)
change_pt = np.append([True], ~(voltaget[1:] != voltaget[:-1]))
discontinuous_time = timet[~np.roll(change_pt, -1)]
model.set_discontinous(discontinuous_time)
model.set_fixed_form_voltage_protocol(timet, voltaget)
timet = timet[::10]
datat = datat[::10]
# PINTS
problem = pints.SingleOutputProblem(model, timet, datat)
error = pints.SumOfSquaresError(problem)
print('Initial guess error:', error(p0))
transform = pints.LogTransformation(n_parameters=problem.n_parameters())
#"""
import time
for _ in range(1):
start_time = time.time()
print(error(p0))
print("--- %s seconds ---" % (time.time() - start_time))
#sys.exit()
#"""
if True:
plt.plot(timet, datat)
plt.plot(timet, problem.evaluate(p0))
plt.savefig('d0/data', dpi=300)
plt.close()
opt = pints.OptimisationController(
error,
p0,
sigma0=p0 * 1e-1,
boundaries=pints.RectangularBoundaries(p0 * 0.1, p0 * 10),
method=pints.CMAES,
transform=transform,
)
opt.set_max_iterations(None)
opt.set_max_unchanged_iterations(iterations=100, threshold=1e-3)
opt.set_parallel(True)
found_parameters, found_value = opt.run()
np.savetxt('d0/model-parameters.txt', found_parameters)