-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest.py
123 lines (104 loc) · 3.78 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import os
import imageio
import numpy as np
import torch
import torch.nn.functional as F
from einops import rearrange
from nerfacc.estimators.occ_grid import OccGridEstimator
from tqdm import trange
from dataset.dreamfusion import DreamFusionLoader
from renderer.ngp import NGPradianceField
from utils import render_image_with_occgrid, set_random_seed
def read_config(fn: str = None):
import yaml
from attrdict import AttrDict
with open(fn, "r") as stream:
try:
config = yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
config = AttrDict(config)
str2list = lambda s: [float(item) for item in s.split(",")]
config.aabb = str2list(config.aabb)
config.shading_sample_prob = str2list(config.shading_sample_prob)
return config
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
type=str,
default="config/peacock.yaml",
help="Path to config file",
)
args = parser.parse_args()
config = read_config(args.config)
set_random_seed(config.seed)
scene_aabb = torch.tensor(config.aabb, dtype=torch.float32, device=config.device)
render_step_size = (
(scene_aabb[3:] - scene_aabb[:3]).max() * np.sqrt(3) / config.n_samples
).item()
log_dir = config.log
assert os.path.exists(log_dir)
os.makedirs(f"{log_dir}/eval", exist_ok=True)
os.makedirs(f"{log_dir}/eval/rgb", exist_ok=True)
os.makedirs(f"{log_dir}/eval/depth", exist_ok=True)
# load radiance field
checkpoint = torch.load(f"{log_dir}/ckpt/ckpt.pth")
estimator = OccGridEstimator(
roi_aabb=config.aabb, resolution=config.grid_resolution, levels=config.grid_nlvl
).to(config.device)
estimator.load_state_dict(checkpoint["estimator"])
radiance_field = NGPradianceField(
aabb=scene_aabb,
density_activation=lambda x: F.softplus(x - 1),
use_normal_net=config.use_normal_net,
use_bkgd_net=config.use_bkgd_net,
density_bias_scale=config.density_bias_scale,
offset_scale=config.offset_scale,
).to(config.device)
radiance_field.load_state_dict(checkpoint["radiance_field"])
# setup dataset
width, height = 512, 512
test_dataset = DreamFusionLoader(
size=36,
width=width,
height=height,
training=False,
device=config.device,
)
# evaluation
radiance_field.eval()
with torch.no_grad():
for i in trange(len(test_dataset), desc="Evaluation"):
data = test_dataset[i]
rays = data["rays"]
render_bkgd = data["color_bkgd"]
shading = data["shading"]
# rendering
rgb, acc, depth, _, _ = render_image_with_occgrid(
radiance_field,
estimator,
rays,
# rendering options
near_plane=config.near_plane,
far_plane=config.far_plane,
render_step_size=render_step_size,
render_bkgd=render_bkgd,
cone_angle=config.cone_angle,
alpha_thre=config.alpha_thre,
shading=shading,
use_bkgd_net=False,
chunk_size=config.eval_chunk_size,
)
rgb = rearrange(rgb, "(h w) c -> h w c", h=height, w=width)
depth = rearrange(depth, "(h w) 1 -> h w", h=height, w=width)
# save visualizations
imageio.imwrite(
f"{log_dir}/eval/rgb/{i}.png",
(rgb.cpu().numpy() * 255).astype(np.uint8),
)
imageio.imwrite(
f"{log_dir}/eval/depth/{i}.png",
((depth / (depth.max() + 1e-6)).cpu().numpy() * 255).astype(np.uint8),
)