-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
167 lines (127 loc) · 4.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*- coding: utf-8 -*-
# @Author: Chetan Reddy
# @Date: 2021-01-05 12:40:52
# @Last Modified by: Chetan Reddy
# @Last Modified time: 2021-01-05 22:23:18
import torch
from torchvision import datasets, transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import logging
import numpy as np
import argparse
from network import Net
PARSER = argparse.ArgumentParser()
PARSER.add_argument('-b', '--batch_size', default=128)
PARSER.add_argument('-e', '--EPOCHS', default=200)
PARSER.add_argument('-lr', '--lr', default=1e-3)
PARSER.add_argument('-tb', '--test_batch_size', default=128)
PARSER.add_argument('-r', '--root', required=True)
class Training():
def __init__(self):
self.net = Net()
self.net.apply(self.init_weights)
#Basic logging
logging.basicConfig(filename="cnn2.log", level=logging.DEBUG)
logging.info(self.net)
logging.info("Number of parameters: {}".format(self.count_parameters(self.net)))
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.optimizer = torch.optim.SGD(self.net.parameters(), lr=args.lr, momentum=0.9)
self.criterion = nn.CrossEntropyLoss().to(self.device)
self.best_acc = 0
self.net.to(self.device)
def loader(self):
# Define transformers to apply on the input data
transform_train = transforms.Compose(
[
transforms.RandomCrop(28, padding=4),
transforms.ToTensor(),
# transforms.Normalize((mean,), (std,)),
]
)
transform_valid = transforms.Compose(
[
transforms.ToTensor(),
# transforms.Normalize((mean,), (std,)),
]
)
train = datasets.EMNIST(
args.root, split="balanced", train=True, download=True, transform=transform_train
)
test = datasets.EMNIST(
args.root, split="balanced", train=False, download=True, transform=transform_valid
)
self.train_loader = torch.utils.data.DataLoader(
train, batch_size=args.batch_size, shuffle=True, num_workers=2, drop_last=True
)
self.test_loader = torch.utils.data.DataLoader(
test, batch_size=args.test_batch_size, shuffle=False, num_workers=2, drop_last=True
)
def init_weights(self, m):
if type(m) == nn.Linear:
torch.nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
def count_parameters(self,model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def inf_generator(self, iterable):
"""Allows training with DataLoaders in a single infinite loop:
for i, (x, y) in enumerate(inf_generator(train_loader)):
"""
iterator = iterable.__iter__()
while True:
try:
yield iterator.__next__()
except StopIteration:
iterator = iterable.__iter__()
def train(self):
self.loader()
data_gen = self.inf_generator(self.train_loader)
batches_per_epoch = len(self.train_loader)
for itr in range(args.EPOCHS * batches_per_epoch):
self.optimizer.zero_grad()
x, y = data_gen.__next__()
x = x.view(-1, 28, 28, 1)
x = torch.transpose(x, 1, 2)
x = x.to(self.device)
y = y.to(self.device)
logits = self.net(x)
loss = self.criterion(logits, y)
loss.backward()
self.optimizer.step()
if itr % batches_per_epoch == 0:
with torch.no_grad():
train_acc = self.accuracy(self.net, self.train_loader)
val_acc = self.accuracy(self.net, self.test_loader)
if val_acc > self.best_acc:
torch.save({"state_dict": self.net.state_dict()}, "alpha_weights.pth")
self.best_acc = val_acc
logging.info(
"Epoch {:04d}"
"Train Acc {:.4f} | Test Acc {:.4f}".format(
itr // batches_per_epoch, train_acc, val_acc
)
)
print(
"Epoch {:04d}"
"Train Acc {:.4f} | Test Acc {:.4f}".format(
itr // batches_per_epoch, train_acc, val_acc
)
)
def one_hot(self,x, K):
return np.array(x[:, None] == np.arange(K)[None, :], dtype=int)
def accuracy(self, model, dataset_loader):
total_correct = 0
for x, y in dataset_loader:
x = x.view(-1, 28, 28, 1)
x = torch.transpose(x, 1, 2)
x = x.to(self.device)
y = self.one_hot(np.array(y.numpy()), 47)
target_class = np.argmax(y, axis=1)
predicted_class = np.argmax(model(x).cpu().detach().numpy(), axis=1)
total_correct += np.sum(predicted_class == target_class)
return total_correct / len(dataset_loader.dataset)
if __name__ == '__main__':
args = PARSER.parse_args()
trainer = Training()
trainer.train()