-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.php
71 lines (55 loc) · 1.82 KB
/
train.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
<?php
include __DIR__ . '/vendor/autoload.php';
use Rubix\ML\Loggers\Screen;
use Rubix\ML\Datasets\Labeled;
use Rubix\ML\PersistentModel;
use Rubix\ML\Pipeline;
use Rubix\ML\Transformers\ImageResizer;
use Rubix\ML\Transformers\ImageVectorizer;
use Rubix\ML\Transformers\ZScaleStandardizer;
use Rubix\ML\Classifiers\MultilayerPerceptron;
use Rubix\ML\NeuralNet\Layers\Dense;
use Rubix\ML\NeuralNet\Layers\Dropout;
use Rubix\ML\NeuralNet\Layers\Activation;
use Rubix\ML\NeuralNet\ActivationFunctions\ReLU;
use Rubix\ML\NeuralNet\Optimizers\Adam;
use Rubix\ML\Persisters\Filesystem;
use Rubix\ML\Extractors\CSV;
ini_set('memory_limit', '-1');
$logger = new Screen();
$logger->info('Loading data into memory');
$samples = $labels = [];
$folders = [ '1', 'B', 'b', 'K', 'k', 'N', 'n', 'P', 'p', 'Q', 'q', 'R', 'r', ];
foreach ($folders as $folder) {
foreach (glob("training/$folder/*.jpg") as $file) {
$samples[] = [imagecreatefromjpeg($file)];
$labels[] = $folder;
}
}
$dataset = new Labeled($samples, $labels);
$estimator = new PersistentModel(
new Pipeline([
new ImageResizer(28, 28),
new ImageVectorizer(true),
new ZScaleStandardizer(),
], new MultilayerPerceptron([
new Dense(128),
new Activation(new ReLU()),
new Dropout(0.2),
new Dense(128),
new Activation(new ReLU()),
new Dropout(0.2),
new Dense(128),
new Activation(new ReLU()),
new Dropout(0.2),
], 256, new Adam(0.0001))),
new Filesystem('piece.rbx', true)
);
$estimator->setLogger($logger);
$estimator->train($dataset);
$extractor = new CSV('progress.csv', true);
$extractor->export($estimator->steps());
$logger->info('Progress saved to progress.csv');
if (strtolower(trim(readline('Save this model? (y|[n]): '))) === 'y') {
$estimator->save();
}