-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathchap2.tex
171 lines (170 loc) · 11.8 KB
/
chap2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
%!TEX root = ./main.tex
\section{Finite Dimensional Vector Spaces}
\subsection{Linear Dependence and Independence}
\begin{definition}
We will works with lists of vectors $\li{\vec v}k$, then the span of $\li{\vec v}k$ can be defined as
\begin{align*}
\spa (\li{\vec v}k) &:= \lb \alpha_1\vec v_1 + \alpha_2 \vec v_2 + \cdots + \alpha_k \vec v_k \rb \forall \alpha_i \in \b F
\end{align*}
If the the list happens to cover the entire vector space $V$, we call the list a spanning list of $V$.
\end{definition}
\begin{definition}
$V$ is finite dimensional if $V$ is a span of finitely many vectors.
\end{definition}
\begin{remark}
$V$ is not finite dimensional is logically equivalent to $V$ is infinite dimensional.
\end{remark}
\begin{example}
Consider the vector spaces: $\c P(x) : = \lb \alpha_0 + \alpha_1 x + \cdots + a_kx^k : a_j \in \b F \text{ for some } k \rb$. We can see that $\c P(x) \subseteq \b F^{\b F}$, and $\c P(x)$ is infinite dimensional.
\end{example}
\begin{definition}
We can define the degree of a polynomial, denoted as $\deg(f(x))$, is the highest power of $x$ where hose coefficient ($\alpha_k$) is nonzero. The zero function $f(x) = 0$ has $-\infty$ degree.
\end{definition}
\begin{example}
$\c P(x)$ is infinite dimensional.
\end{example}
\begin{proof}
Suppose $\c P(x) = \text{span}(\li fk)$, where $f_j$ is polynomials, for all $j$.
Let \[D := \text{max}\lb\deg(f_1), \deg(f_2), \cdots, \deg(f_k)\rb\] Suppose $f(x) = x^{D + 1} \in \c P(x)$ however, $x \not\in \text{span}(\li fk)$. Since $f(x)$ is not a linear combination of $\li fk$. A contradiction, therefore $\c P(x)$ is a infinite dimensional vector space.
\end{proof}
\begin{definition}
$V$ has dimension $k$ over $\b F$ if you can find vectors $\li vk$ such that
\[\forall \vec v \in V : \vec v = \sum f_i\vec v_i \text{ uniquely}\]
\end{definition}
\begin{definition}
$\c P_d(x) : =$ all polynomials in $g(x)$ of degree $\leq d$. \\ Note that $\{ 1, x, x^2, \cdots, x^d\}$ is a spanning list for $\c P_d(x)$
\end{definition}
\begin{definition}
A list $\li {\vec v}k \in V$ is called \textbf{linearly independent} if the equation
\[ \alpha_1 \vec v_1 + \alpha_2 \vec v_2 + \cdots + \alpha_k \vec v_k = 0 \implies \li \alpha k = 0\]
\end{definition}
\begin{definition}
A list $\li {\vec v}k \in V$ is called \textbf{linearly dependent} if it is not independent.
\end{definition}
\subsection*{Digression on Logic}
Logic: $A \implies B$ is equivalent to $\neg A \lor B$. Then we know that \[\neg (A \implies B) \iff (\neg(\neg A \lor B)) \iff A \land \neg B\]
\begin{definition}[The better definition]
A list $\li {\vec v}k \in V$ is called \textbf{linearly dependent} if for equation
\[ \alpha_1 \vec v_1 + \alpha_2 \vec v_2 + \cdots + \alpha_k \vec v_k = 0\] has a nontrivial solution such that $\li {\vec v}k \neq 0$
\end{definition}
\begin{example}
Is $\lb \rb$ linearly independent? \\
By definition, it is linearly independent, because it is not linearly dependent. A set $S$ is linearly dependent if there exists a finite set of vectors $\li {\vec v}n$ and corresponding scalars $\li \alpha n$ such that there exists at least one $\alpha_i \neq 0$ so that \[ \sum_{i= 0}^n \alpha_i \vec v_i = 0\] since $\alpha_i$ doesn't exist, we know that $\lb \rb$ is linearly independent.
\end{example}
\begin{example}
Is $\lb (1,0,0),(0,1,0),(0,0,1)\rb$ linearly independent on $\b R^3$?
\begin{align*}
\alpha_1(1,0,0) + \alpha_2(0,1,0) + \alpha_3(0,0,1) &= (0,0,0) \\
\implies (\alpha_1, \alpha_2, \alpha_3) &= (0,0,0) \\
\implies \alpha_1 = \alpha_2 = \alpha_3 &= 0
\end{align*}
\end{example}
\begin{remark}
We can remove vectors from a linearly independent list can still remain independent, however, we cannot guarantee the result if we are still adding vectors; In mathematical terms, any sublist of the list is linearly independent, since $\lb \rb$ is a sublist of any list, therefore its linearly independent.
\end{remark}
\begin{lemma}[Linear Dependence Lemma]
Suppose $\li {\vec v} h$ is linearly independent. Then there exists $j$ between $1$ and $k$ such that
\begin{itemize}
\item $v_j \in \spa \lb \vec v_1, \vec v_2, \vec v_{j-1} \rb$
\item $\spa \lb \li {\vec v} h \rb = \spa \lb \li {\vec v}{j-1}, \vec v_{j+1} , \cdots, \vec v_k \rb$
\end{itemize}
\end{lemma}
\begin{proof}
If $\li{\vec v}k$ is a linearly dependent list, there are coefficients $\li \alpha k$ not all $0$, such that
\[ \alpha_1 \vec v_1 + \alpha \vec v_2 + \cdots \alpha_k \vec v_k = 0\]
Take $j$ such that $\alpha_j$ is the largest index with $\alpha_j \neq 0$. Then $\alpha_{j + 1}= \alpha_{j + 2} = \cdots = \alpha_k = 0$ and \[ \vec v_j = \frac{-1}{\alpha_j} (\alpha_1 \vec v_1 + \alpha \vec v_2 + \cdots + \alpha_{j - 1} \vec v_{j-1})\] hence $\vec v_j \in \spa \lb \li{\vec v}{j-1} \rb$.
\end{proof}
\begin{lemma}[Very Important, a.k.a. Magic Lemma]
The length of the independent list $\leq$ length of any spanning list.
\end{lemma}
\begin{proof}
Say $\li {\vec u}n$ is linearly independent say $\li {\vec v} m$ is spanning. Then we want to establish that $ m \leq n$.
\begin{enumerate}[label = {Step \arabic*.}]
\item Take the list $\vec u_1, \li {\vec v} m$ It is linearly independent since $\vec u_1 \in \spa \lb \li {\vec v}m \rb$. By the linear dependence lemma, there is a $j$ such that $\vec v_j$ can be removed (noted that $\vec u_1$ cannot be subject to removal since $\vec u_1$ comes from a linearly independent list). Consider the new list $\lb \vec u_1, \li {\vec v}{j-1} , \cdots, \vec v_m\rb$
\item We can continue this process by bringing $\vec u_2, \vec u_3, \cdots \vec u_n$, we know that $\vec u_i$ since they are linearly independent.
\end{enumerate}
Note that this process preserves linear span of the whole list. \\
We know that this list contains all the $\vec u_i$ (plus possibly some remaining $\vec v_j$) and the length of the list is always $n$. So $\boxed{m \leq n}$.
\end{proof}
\subsection{Bases and Dimension}
\begin{definition}
A basis a linearly independent spanning list.
\end{definition}
\begin{theorem}
Any two basis in a finite dimensional space have the same number of vectors.
\end{theorem}
\begin{remark}
The span of $\lb \rb$ is the zero vector.
\end{remark}
\begin{theorem}
Suppose $V$ is a finite dimensional vector space. Let $W$ be a subspace of $V$, then $W$ is finite dimensional.
\end{theorem}
\begin{proof}
$V$ is finite dimensional means that $V$ is spanned by some $k$ vectors. Consider $W$. If $W = \lb \vec 0 \rb$, then $w$ is spanned by the empty list $\vec 0$. If $W \neq \vec 0$, there exists $\vec w_1 \in W$ such that $W = \spa\lb \vec u_1 \rb$, done. Otherwise take $\vec w_2 \in W \ \backslash \ \spa \lb \vec w_1 \rb$. Repeat this algorithm until it terminates. Now we want to show that this algorithm will terminate at $\vec w_k$, we know that $\li {\vec w}j$ is linearly independent by construction and the linearly dependence lemma. By remark 2.16, we know that the length of any such list will not exceed length $k$, therefore we know the algorithm will terminate in finite steps. This implies that $W$ is finitely spanned, or $W$ is finite dimension.
\end{proof}
\subsubsection*{Dimension}
\begin{definition}
Dimension of a vector space $V$ is the cardinality of any basis in a finite dimensional space.
\end{definition}
\begin{proposition}[Criterion for a Basis]
$\li {\vec v}k$ is a basis for $V$ if and only if any $v \in V$ can be uniquely written as a lineat combination
\[ \lambda_1 \vec v_1 + \lambda_2 \vec v_2 + \cdots + \lambda \vec v_n \]
\end{proposition}
\begin{proof}
We know that ``can be written as linear combination" is logically equivalent a $\li {\vec x} k$ is a spanning list for $V$. ``uniqueness" is logically equivalent as linear independence. Suppose
\[ \vec v = \alpha_1 \vec v_1 + \alpha_2 \vec v_2 + \cdots + \alpha_k \vec v_k = \beta_1 \vec v_1 + \beta_2 \vec v_2 + \cdots + \beta_k \vec v_k\]
Not all $\alpha_j = \beta_j$. Then $(\alpha_1 -\beta_1) \vec v_1 + (\alpha_2 - \beta_2) \vec v_2 + \cdots (\alpha_k - \beta_k) \vec v_k = \vec 0$ is a nontrivial linear combination of $\li {\vec v} k$ and vice versa.
\end{proof}
\begin{theorem}
Any spanning set for a finite dimensional space can be shrink down to a basis.
\end{theorem}
\begin{proof}
Trivial by the linear dependence lemma.
\end{proof}
\begin{example}
Consider $\c P_2(x)$ is spanned by $\lb x^2, (x-1)^2, (x-3)^2, (x-3)^2\rb$, we can see that this can be thinned down to $\lb x^2, (x-1)^2, (x-2)^2 \rb$.
\end{example}
\begin{corollary}
Any linearly independent list in a finite dimensional space can be enlarged to a basis.
\end{corollary}
\begin{proof}
Add a spanning list at the back of our given list, then do removal for the linearly independent lemma.
\end{proof}
\begin{theorem}
Suppose $V$ is finite dimensional and $W$ is a subspace, then there is a subspace $U$ such that $V = W \oplus U$.
\end{theorem}
\begin{proof}
We already know by proceeding stuff $W$ is finite dimensional an its dimensional does not exceed that of $V$. Take any basis of $\li{\vec w}k$ of $W$. It's linearly independent so can be enlarged to a basis for $V$. Suppose the resulting basis is $\li{\vec w}k, \li{\vec u}l$. Take $U = \spa (\li{\vec v}l)$. Then $W + U = V$ and $W \cap U = \lb 0 \rb$.
\end{proof}
\begin{remark}
$\spa (\li{\vec n}n)$ is a subspace of $V$ by construction.
\end{remark}
\begin{example}
Consider $\c P(x)T$. We define $W$ as
\[ W:= \lb f \in \c P_3(x) : f'(5) = 0 \rb\]
A basis for $W$ can be taken as $\lb 1, (x - 5)^2, (x-5)^3 \rb$.
\noindent Now consider \[\tilde W:= \lb f \in \c P_3(x) : f''(5) \rb\].
A basis for $W$ can be taken as $\lb 1, (x - 5)^2, (x-5)^3 \rb$. \\
\end{example}
\subsubsection*{Dimension of a Sum}
\textbf{Principal of Inclusion for subspaces}
\begin{center}
\begin{venndiagram2sets}[labelA=, labelB=]%
\fillACapB
\setpostvennhook
{%
\draw (labelA) ++(-100:2ex) node{$ W_1 $};
\draw (labelB) ++(100:-2ex) node{$ W_2 $};
}%
\end{venndiagram2sets}
\end{center}
\[ \dim (W_1 + W_2) = \dim W_1 + \dim W_2 - \dim (W_1 \cap W_2)\]
Suppose $W_1 \cap W_2$ forms a basis $\li{\vec w}k$.
We can extend the basis to \[\vec w_1^{(1)}, \vec w_2^{(1)}, \ldots, \vec w_l^{(1)}, \li{\vec w}k\] is a basis for $W_1$. Similarly, we can extend the basis to \[\vec w_1^{(2)}, \vec w_2^{(2)}, \ldots, \vec w_m^{(2)}, \li{\vec w}k\] is a basis for $W_2$. \\
We want to establish that \[\dim (W_1 + W_2) = \dim W_1 + \dim W_2 = \dim (W_1 \cap W_2) = l + m + k\]
We want to prove that \[\vec w_1^{(1)}, \vec w_2^{(1)}, \ldots, \vec w_l^{(1)}, \vec w_1^{(2)}, \vec w_2^{(2)}, \ldots, \vec w_m^{(2)}, \li{\vec w}k\] is a basis for $W_1 + W_2$.
We can see that \[\spa (\li{\vec w^{1}}l, \vec w_1^{(2)}, \vec w_2^{(2)}, \ldots, \vec w_m^{(2)}, \li{\vec w}k) \supseteq U_1, U_2\] Hence $\spa (\ldots) \supseteq U_1 + U_2$.
Suppose the equation \[\alpha_1 \vec w_1^{(1)} + \alpha_2 \vec w_2^{(1)} + \cdots + \alpha_l \vec w_l^{(1)} + \beta_1 \vec w_1^{(2)} + \beta_1 \vec w_2^{(2)} + \cdots + \beta_m \vec w_m^{(2)} + \gamma_1 \vec w_1 + \gamma_2 \vec w_2 + \cdots + \gamma_k \vec w_k = \vec 0\]
Manipulate the equation and we can see \[ \underbrace{ (\alpha_1 \vec w_1^{(1)} + \alpha_2 \vec w_2^{(1)} + \cdots + \alpha_l \vec w_l^{(1)} + \beta_1 \vec w_1^{(2)} + \beta_1 \vec w_2^{(2)} + \cdots + \beta_m \vec w_m^{(2)})}_{\in W_1} = - \underbrace{(\gamma_1 \vec w_1 + \gamma_2 \vec w_2 + \cdots + \gamma_k \vec w_k)}_{\in W_2 \setminus W_1} \]
Since they belongs to different sets, clearly they cannot span each other. Therefore \[ \alpha_1 = \alpha_2 = \cdots = \alpha_l = \beta_1 = \beta_2 = \cdots = \beta_m = \gamma_1 = \gamma_2 = \cdots = \gamma_n = 0\]
Hence the list of vectors is also linearly independent.