-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactive_modify_sample_label.py
278 lines (234 loc) · 10.5 KB
/
active_modify_sample_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import random
from dataset import *
from logger import *
from training import *
import tool
import outlier_detection
import log_io
import simple_plot
from sklearn.neighbors import LocalOutlierFactor
def modify_label_dummy(X, y):
name = "dummy"
return y, np.ones_like(y)
from collections import Counter
def add_noise_to_majority(y, target_count, random_state=0, verbose=False):
noised_y = np.array(y)
groundtruth = np.ones_like(y)
random.seed(random_state * 2)
counter = Counter(y)
minority_class = min(counter, key=counter.get)
# print('add noise: minority label', minority_class)
class_labels = list(counter.keys())
class_labels.remove(minority_class)
outlier_count = 0
majority_indices = []
# minority_indices = []
for i, label in enumerate(y):
if label == minority_class:
continue
majority_indices.append(i)
np.random.seed(random_state)
sampled_majority_indices = np.random.choice(majority_indices, target_count, replace=False)
outlier_count = len(sampled_majority_indices)
for i, index in enumerate(sampled_majority_indices):
noised_y[index] = minority_class
groundtruth[index] = -1
if verbose:
print(outlier_count, "outlier added")
return noised_y, groundtruth
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score
def update_by_outlier_prediction(original_y, outlier_prediction) -> np.ndarray:
updated_y = np.zeros_like(original_y)
# print("original", Counter(original_y))
for i, l in enumerate(outlier_prediction):
if l == -1:
updated_y[i] = 1 - original_y[i]
else:
updated_y[i] = original_y[i]
# print("updated", Counter(updated_y))
return updated_y
from sklearn.metrics import roc_auc_score
def active_modify_label_only_training_set(param, X, y, detector_name, detector, noise_true_ratio=0.1, threshold=0.5, repeat=10, random_state=0, log_identifier="", verbose=False, id=0, dataset='toy'):
all_confusion_matrix = []
total_time = 0
detection_errors = 0
n_instances, n_features = X.shape
outlier_detection_confusion_matrix = []
counter = Counter(y)
minority_class = min(counter, key=counter.get)
roc = []
noise_proportition = 0
accs = []
added_noise_count = 0
for i in range(repeat):
model = lgb.LGBMClassifier(
boosting_type="gbdt",
learning_rate=param["learning_rate"],
n_estimators=param["n_estimators"],
max_depth=param["max_depth"],
num_leaves=param["num_leaves"],
objective="binary",
seed=random_state
)
# model = RandomForestClassifier(
# n_estimators=param["n_estimators"],
# max_depth=param["max_depth"],
# random_state=random_state
# )
train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2,
random_state=i)
true_minority_indices = np.array(train_y == minority_class)
current_noise_count = int(noise_true_ratio * true_minority_indices.sum())
noised_train_y, groundtruth = add_noise_to_majority(train_y, current_noise_count, random_state=i, verbose=verbose)
added_noise_count += Counter(groundtruth)[-1]
noised_minority_indices = noised_train_y==minority_class
noise_proportition = 1 - true_minority_indices.sum() / noised_minority_indices.sum()
current_noise_true_ratio = round(noise_proportition / (1 - noise_proportition), 3)
if detector.__class__ == LocalOutlierFactor:
detector = LocalOutlierFactor(n_neighbors=5, contamination=min(noise_proportition, 0.5))
detector.set_params(contamination=noise_proportition)
noised_minority_X = train_X[noised_minority_indices]
if noise_proportition > 0:
start = time.time()
if verbose:
print(detector_name, "start detecting")
# predict and update
outlier_prediction = outlier_detection.omni_detector_detect(detector, noised_minority_X)
expanded_outlier_prediction = np.ones(shape=(len(train_y)))
expanded_outlier_prediction[noised_minority_indices] = outlier_prediction
updated_y = update_by_outlier_prediction(noised_train_y, expanded_outlier_prediction)
# collect stats info
n_errors = (outlier_prediction != groundtruth[noised_minority_indices]).sum()
detection_cf = confusion_matrix(groundtruth[noised_minority_indices], outlier_prediction)
outlier_detection_confusion_matrix.append(np.ravel(detection_cf))
total_time = time.time() - start
detection_errors += n_errors
if verbose:
print(detector_name, "finish detecting", time.time() - start, n_errors)
else:
updated_y = train_y
expanded_outlier_prediction = np.ones_like(train_y)
detection_cf = confusion_matrix(groundtruth[noised_minority_indices], groundtruth[noised_minority_indices])
outlier_detection_confusion_matrix.append([0, 0, 0, detection_cf[0][0]])
trial_id = "{}-{}-{:.3f}".format(detector_name, id, noise_true_ratio)
# train model
lgb_model = model.fit(train_X, updated_y)
# predict training set
prediction_training = lgb_model.predict(train_X)
# # save plot: based on updated_y
# training_predicted_result = updated_y + prediction_training * 2
# colors, _ = tool.category2color(training_predicted_result, {
# 0: "#5079a5",
# 1: "#dd565c",
# 2: "#79b7b2",
# 3: "#ef8e3b"
# })
# trial_id = "{}-{}-{:.4f}".format(detector_name, id, noise_true_ratio)
# # save plots
# path = join("figures", "gaussian-using-noised-label", trial_id + ".png")
# simple_plot.save_plot2png(train_X[:, 0], train_X[:, 1], colors, path, noise_true_ratio)
# # save plot: based on updated_y
# training_predicted_result = train_y + prediction_training * 2
# colors, _ = tool.category2color(training_predicted_result, {
# 0: "#5079a5",
# 1: "#dd565c",
# 2: "#79b7b2",
# 3: "#ef8e3b"
# })
# # save plots
# folder = join("figures", "gaussian-using-true-label", detector_name)
# if not os.path.exists(folder):
# os.mkdir(folder)
# path = join(folder, trial_id + ".png")
# simple_plot.save_plot2png(train_X[:, 0], train_X[:, 1], colors, path, noise_true_ratio)
# save detection and classification result
all_info = np.concatenate((train_X,
train_y[:, np.newaxis],
groundtruth[:, np.newaxis],
expanded_outlier_prediction[:, np.newaxis],
prediction_training[:, np.newaxis]
),
axis=1
)
result_root = os.path.join("outlier-result", log_identifier)
if not os.path.exists(result_root):
os.mkdir(result_root)
np.savetxt(os.path.join(result_root, trial_id + ".csv"), all_info, delimiter=',', fmt='%d')
# predict testing set
predicted_proba = lgb_model.predict_proba(test_X)
prediction_proba = predicted_proba[:, 1]
prediction = np.where(prediction_proba > threshold, [1], [0])
# metrics
auc = roc_auc_score(test_y, prediction_proba)
acc = accuracy_score(test_y, prediction)
accs.append(acc)
roc.append(auc)
conf_mat = confusion_matrix(test_y, prediction)
conf_mat = np.ravel(conf_mat)
all_confusion_matrix.append(conf_mat)
# aggregate metric results
aggregated_conf_mat = np.array(all_confusion_matrix).mean(axis=0)
aggregated_detection_conf_mat = np.array(outlier_detection_confusion_matrix).mean(axis=0)
# current_noise_count = noise_proportition / (1 - noise_proportition)
current_noise_true_ratio = noise_true_ratio
roc_mean = np.array(roc).mean()
acc_mean = np.array(accs).mean()
print("average noise count", added_noise_count / repeat)
majority_class = 1 - minority_class
classification_conf_mat = np.array(aggregated_conf_mat).ravel().tolist()
detection_conf_mat = np.array(aggregated_detection_conf_mat).ravel().tolist()
metric_bundle = [current_noise_true_ratio, detector_name, roc_mean, acc_mean] + classification_conf_mat + detection_conf_mat
file_log(log_identifier, *metric_bundle)
return metric_bundle
def parse_log_result(data: {}, index_key, filter_key, row_index):
method_names = set(data[index_key])
n_data = len(data[index_key])
result = {}
x_values = set(data[row_index])
x_values = sorted(x_values)
length_for_series = []
for name in method_names:
l = []
for i in range(n_data):
if data[index_key][i] == name:
l.append((data[filter_key][i], data[row_index][i]))
l = sorted(l, key=lambda e: e[1])
result[name] = [e[0] for e in l]
length_for_series.append(len(result[name]))
# print(result)
min_length = np.min(length_for_series)
for name in result:
result[name] = result[name][:min_length]
x_values = x_values[:min_length]
return result, x_values
if __name__ == '__main__':
# dataset = "santander"
dataset = "toy"
# dataset = "fraud"
path = os.path.join("tests", "{}_test_11".format(dataset))
r = log_io.from_csv(path)
column_names = ["accuracy",
"classification true majority",
"classification false minority",
"classification false majority",
"classification true minority",
"detection true majority",
"detection false minority",
"detection false majority",
"detection true minority"
]
x_column = "noise_ratio"
x_title = "noise / true minority"
color_map = {
"Dummy": "#949494",
"Isolation-Forest": "#1E76B4",
"3Sigma": "#FF7F0E",
"Local-Outlier-Factor": "#D62728",
"Robust-Covariance": "#9467BD"
}
for column in column_names:
result_title = "result-{}-{}".format(dataset, column)
result, x_values = parse_log_result(r, "method", column, x_column)
simple_plot.save_linechart(result, x_values, result_title + ".png", title=result_title, x_title=x_title,
y_title=column, color_map=color_map)