-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_pretrain_data.py
72 lines (61 loc) · 3.35 KB
/
process_pretrain_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
import os
import pickle
from tqdm import tqdm
from transformers import pipeline
from pretrain_data.data_pipeline import *
from pretrain_data.data_utils import *
parser = argparse.ArgumentParser(description='Pretraining data runner')
parser.add_argument('--dir_paths', nargs='+', default=None, help='Raw data directories paths. Default None (use Babylm and Tinystories data paths)')
parser.add_argument('--save_paths', nargs='+', default=None, help='Saving paths for processed data and results. Default None (use pre-defined paths and filenames)')
parser.add_argument('--sample_subset', type=int, default=0, help='Number of samples to use. Default 0 (use all data)')
parser.add_argument('--seed', type=int, default=42, help='Random seed for sampling data subsets, default 42')
parser.add_argument('--filter_emotions', type=bool, default=True, help='Filter non neutral emotions with scores > 0.5, it will save an extra file. Default True')
parser.add_argument('--model', type=str, default="SamLowe/roberta-base-go_emotions", help='Huggingface model to use for emotion classification, must be text-classification model. Default "SamLowe/roberta-base-go_emotions"')
parser.add_argument('--device', type=str, default="cpu", help='Device to use for model inference (cpu / cuda / mps). Default "cpu"')
args = parser.parse_args()
# Set up the paths
if args.dir_paths is None:
dir_paths = ["data/babylm_data/babylm_100M/"]
print(f"Directory paths not provided, using default path {dir_paths}")
# elif isinstance(args.dir_paths, str):
# dir_paths = [args.dir_paths]
# else:
# dir_paths = args.dir_paths
if args.save_paths is None:
save_paths = ["processed_data/babylm.pkl"]
print(f"Save paths not provided, using default path {save_paths}")
# elif isinstance(args.save_paths, str):
# save_paths = [args.save_paths]
# else:
# save_paths = args.save_paths
for save_path in save_paths:
if not save_path.endswith(".pkl"):
raise ValueError(f"Invalid save path {save_path}, must end with .pkl, the pipeline only supports pickle files.")
# Fetch data and run the pipeline
for i, (dir_path, save_path) in enumerate(zip(dir_paths, save_paths)):
print(f"Fetching data files from {dir_path}, running {i+1}/{len(dir_paths)} paths")
data_sources = [f for f in os.listdir(dir_path) if not f.startswith(".")]
data_dict = get_data(dir_path, data_sources, args.sample_subset, args.seed)
total = 0
for source, ds in data_dict.items():
print(f"{source} lines of corpus: {len(ds)}")
total += len(ds)
print(f"{dir_path} total lines of corpus: {total}")
pipe = pipeline(
"text-classification",
model=args.model,
top_k=None,
framework="pt", # pytorch
device=args.device # cpu / cuda / mps
)
results = classify_emotion(data_dict, pipe)
print(f"Saving processed data to {save_path}")
os.makedirs(os.path.dirname(save_path), exist_ok=True)
pickle.dump(results, open(f"{save_path}", "wb"))
if args.filter_emotions:
print(f"Filtering emotions with scores > 0.5")
results = [s for s in tqdm(results) if (s["label_0"] != "neutral") and (s["score_0"] > 0.5)]
filtered_save_path = save_path.replace(".pkl", "_filtered.pkl")
print(f"Saving filtered data to {filtered_save_path}")
pickle.dump(results, open(f"{filtered_save_path}", "wb"))