-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCNN.py
202 lines (177 loc) · 7.62 KB
/
CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import numpy as np
import keras
from pandas import DataFrame as df
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_validate
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score, f1_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import MinMaxScaler
from keras.utils import to_categorical
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Flatten
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential
# 데이터 로드
with open('crx.data') as file:
data=[]
for line in file.readlines():
data.append(line.split(','))
for i in range(len(data)):
data[i][0]=data[i][0][len(data[i][0])-1]
data[i][len(data[i])-1]=data[i][len(data[i])-1][0]
df1=df(data,columns=['A1','A2','A3','A4','A5','A6','A7','A8','A9','A10','A11','A12','A13','A14','A15','A16'])
#데이터 전처리 (for DLT)
#target-> A16 ('-': negative -> 0, '+': positive -> 1)
df1.A16=df1.A16.replace('-',0)
df1.A16=df1.A16.replace('+',1)
df1.A1=df1.A1.replace('a',2)
df1.A1=df1.A1.replace('b',3)
df1.A4=df1.A4.replace('u',4)
df1.A4=df1.A4.replace('y',5)
df1.A4=df1.A4.replace('l',6)
df1.A4=df1.A4.replace('t',7)
df1.A5=df1.A5.replace('g',8)
df1.A5=df1.A5.replace('p',9)
df1.A5=df1.A5.replace('gg',10)
df1.A6=df1.A6.replace('c',11)
df1.A6=df1.A6.replace('d',12)
df1.A6=df1.A6.replace('cc',13)
df1.A6=df1.A6.replace('i',14)
df1.A6=df1.A6.replace('j',15)
df1.A6=df1.A6.replace('k',16)
df1.A6=df1.A6.replace('m',17)
df1.A6=df1.A6.replace('r',18)
df1.A6=df1.A6.replace('q',19)
df1.A6=df1.A6.replace('w',20)
df1.A6=df1.A6.replace('x',21)
df1.A6=df1.A6.replace('e',22)
df1.A6=df1.A6.replace('aa',23)
df1.A6=df1.A6.replace('ff',24)
df1.A7=df1.A7.replace('v',25)
df1.A7=df1.A7.replace('h',26)
df1.A7=df1.A7.replace('bb',27)
df1.A7=df1.A7.replace('j',28)
df1.A7=df1.A7.replace('n',29)
df1.A7=df1.A7.replace('z',30)
df1.A7=df1.A7.replace('dd',31)
df1.A7=df1.A7.replace('ff',32)
df1.A7=df1.A7.replace('o',33)
df1.A9=df1.A9.replace('t',34)
df1.A9=df1.A9.replace('f',35)
df1.A10=df1.A10.replace('t',36)
df1.A10=df1.A10.replace('f',37)
df1.A12=df1.A12.replace('t',38)
df1.A12=df1.A12.replace('f',39)
df1.A13=df1.A13.replace('g',40)
df1.A13=df1.A13.replace('p',41)
df1.A13=df1.A13.replace('s',42)
#결측치 처리
df1=df1.replace('?',np.nan)
df1=df1.dropna(how='any')
#데이터 타입 변경
df1=df1.astype({'A2':'float','A3':'float','A8':'float','A11':'float','A14':'float','A15':'float'})
#속성과 클래스 분리
X=np.array(df1.loc[:,'A1':'A15'])
y=np.array(df1.loc[:,'A16'])
#학습&예측 데이터 나누기
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.1)
#데이터 학습(DT)
dt=DecisionTreeClassifier(random_state=42)
dt=dt.fit(X_train, y_train)
print("DT 훈련 세트 정확도: {:.3f}".format(dt.score(X_train, y_train)))
print("DT 테스트 세트 정확도: {:.3f}".format(dt.score(X_test, y_test)))
#데이터 전처리 (for MLP)
mean_on_train=X_train.mean(axis=0)
std_on_train=X_train.std(axis=0)
X_train_scaled = (X_train - mean_on_train) / std_on_train
X_test_scaled = (X_test - mean_on_train) / std_on_train
#데이터 학습(MLP)
mlp=MLPClassifier(solver='adam',max_iter=2000,random_state=42,hidden_layer_sizes=(200,100))
mlp=mlp.fit(X_train,y_train)
print("MLP 훈련 세트 정확도: {:.3f}".format(mlp.score(X_train_scaled, y_train)))
print("MLP 테스트 세트 정확도: {:.3f}".format(mlp.score(X_test_scaled, y_test)))
#데이터 학습(RandomForest)
forest=RandomForestClassifier(n_estimators=100,random_state=42)
forest=forest.fit(X_train,y_train)
print("Random Forest 훈련 세트 정확도: {:.3f}".format(forest.score(X_train, y_train)))
print("Random Forest 테스트 세트 정확도: {:.3f}".format(forest.score(X_test, y_test)))
#데이터 전처리 (for CNN)
y_cnn=to_categorical(y_train)
scaler=MinMaxScaler(feature_range=(0,1))
scaler.fit(X_train)
X_train_cnn=scaler.transform(X_train)
X_train_cnn=X_train_cnn.reshape(-1,15,1,1)
#데이터 학습(CNN)
batch_size=64
epochs=50
num_classes=2
cv = KFold(10, shuffle=True, random_state=0)
accs=[]
precs=[]
recalls=[]
f1s=[]
for i, (idx_train, idx_test) in enumerate(cv.split(X_train_cnn)):
print(i)
dataset_x_train=X_train_cnn[idx_train]
dataset_x_test=X_train_cnn[idx_test]
dataset_y_train=y_cnn[idx_train]
dataset_y_test=y_cnn[idx_test]
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),activation='linear',input_shape=(15,1,1),padding='same'))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D((2, 2),padding='same'))
model.add(Conv2D(64, (3, 3), activation='linear',padding='same'))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Conv2D(128, (3, 3), activation='linear',padding='same'))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
model.add(Flatten())
model.add(Dense(10, activation='linear'))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
model.fit(dataset_x_train, dataset_y_train, batch_size=batch_size,epochs=epochs,verbose=1)
real=dataset_y_test
pred=np.argmax(model.predict(dataset_x_test),1)
accuracy = np.mean(np.equal(np.argmax(real,1),pred))
accs.append(accuracy)
right = np.sum(np.argmax(real,1) * pred == 1)
precision = right / np.sum(pred)
precs.append(precision)
recall = right / np.sum(np.argmax(real,1))
recalls.append(recall)
f1 = 2 * precision*recall/(precision+recall)
f1s.append(f1)
#K-Fold 평가
scoring = {'accuracy' : make_scorer(accuracy_score),
'precision' : make_scorer(precision_score),
'recall' : make_scorer(recall_score),
'f1_score' : make_scorer(f1_score)}
kfold=KFold(n_splits=10,shuffle=True,random_state=42)
result_DT=cross_validate(estimator=dt,X=X_test,y=y_test,cv=kfold,scoring=scoring)
result_mlp=cross_validate(estimator=mlp,X=X_test,y=y_test,cv=kfold,scoring=scoring)
result_forest=cross_validate(estimator=forest,X=X_test,y=y_test,cv=kfold,scoring=scoring)
print("\nDecision Tree")
print("DT model Accuracy: {:.3f}".format(result_DT['test_accuracy'].mean()))
print("DT model Precision: {:.3f}".format(result_DT['test_precision'].mean()))
print("DT model Recall: {:.3f}".format(result_DT['test_recall'].mean()))
print("DT model F1: {:.3f}".format(result_DT['test_f1_score'].mean()))
print("\nMulti layer Perceptron")
print("MLP model Accuracy: {:.3f}".format(result_mlp['test_accuracy'].mean()))
print("MLP model Precision: {:.3f}".format(result_mlp['test_precision'].mean()))
print("MLP model Recall: {:.3f}".format(result_mlp['test_recall'].mean()))
print("MLP model F1: {:.3f}".format(result_mlp['test_f1_score'].mean()))
print("\nRandom Froest")
print("Random forest model Accuracy: {:.3f}".format(result_forest['test_accuracy'].mean()))
print("Random forest model Precision: {:.3f}".format(result_forest['test_precision'].mean()))
print("Random forest model Recall: {:.3f}".format(result_forest['test_recall'].mean()))
print("Random forest model F1: {:.3f}".format(result_forest['test_f1_score'].mean()))
print("\nCNN")
print("CNN model Accuracy: {:.3f}".format(np.mean(accs)))
print("CNN model Precision: {:.3f}".format(np.mean(precs)))
print("CNN model Recall: {:.3f}".format(np.mean(recalls)))
print("CNN model F1: {:.3f}".format(np.mean(f1s)))