-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperimentRun_TLE_github.r
97 lines (82 loc) · 3.96 KB
/
experimentRun_TLE_github.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
library("fossil")
library(RobMixReg)
library(robustbase)
main <- function(simulationData,savePath){
finalRes4backup_TLE=list()
#finalRes=list()
for (i1 in 1:length(simulationData)){
testType=NULL
testType=names(simulationData[i1]) # simu_k,simu_n,simu_sigma,....
k=2
allTestTypeRes=list()
for(i2 in 1:length(simulationData[[i1]])){ # test each parameter in one test type
parameter_value=NULL
parameter_value=names(simulationData[[i1]][i2]) # sig=0.1
if(testType=="simu_k"){
k=NULL
k=strtoi(strsplit(parameter_value,'=')[[1]][2])
print(paste("The new k:",k,sep = " "))
}
oneTestTypeRes=list()
print(paste("start test type:",parameter_value,'method:TLE',sep = ' '))
tmpRes=c()
for(i3 in 1:length(simulationData[[i1]][[i2]])){
print(paste("The data Id:",i3))
data=NULL;xy=NULL;labels_true=NULL;beta_true=NULL;
data=simulationData[[i1]][[i2]][[i3]]$mat
data=data.frame(data)
xy=simulationData[[i1]][[i2]][[i3]]$xy
labels_true=simulationData[[i1]][[i2]][[i3]]$cl_new
beta_true=simulationData[[i1]][[i2]][[i3]]$beta
errorInfo=NULL
res_TLE=NULL
errorInfo=try({
# get the results
res_TLE=TLE(formula= as.formula("y~x"),data=data, nc=k,tRatio=0.5,MaxIt=1000)
},silent = TRUE)
if ("try-error" %in% class(errorInfo)){
print("Error!")
tmpRes=append(tmpRes,c(-1,-1,-1,-1))
next
}
# get the outputs rand inex and ARandIndex
labels_predicted=NULL;randIdx=NULL;AdjustedRandIdx=NULL;
labels_predicted=res_TLE@ctleclusters
randIdx=round(rand.index(labels_predicted,labels_true),digits = 2)
AdjustedRandIdx=round(adj.rand.index(labels_predicted,labels_true),digits = 2)
# the euclidean distance of the beta_predicted and the beta_true
beta_predicted=c()
for (i in 1:k){
coef_x=NULL
coef_x=round(res_TLE@compcoef["coef.x",i][[1]],digits = 2)
beta_predicted=append(beta_predicted,c(coef_x))
}
print("beta_true:")
print(sort(beta_true))
print("beta_predicted:")
print(sort(beta_predicted))
beta_euDist=round(dist(rbind(sort(beta_true),sort(beta_predicted)))[1],digits=2)
# get the outlier Accuracy
outlierAccuracy=NULL
outlierAccuracy= round(length(intersect(res_TLE@indout , which(labels_true<0))) / length(which(labels_true<0)),digits = 2)
tmpRes=append(tmpRes,c(randIdx,AdjustedRandIdx,outlierAccuracy,beta_euDist))
}
# convert list to matrix
tmpRes=matrix(tmpRes,ncol=4,byrow = TRUE)
colnames(tmpRes)=c("RI","ARI","outlierAcc","beta_euDist")
oneTestTypeRes["res_TLE"]=list(tmpRes)
print(paste("End test type:",parameter_value,'| method:TLE',sep = ' '))
cat("\n")# new line
# for res_robSpaReg end
# save the results of 4 methos to allTestTypeRes
allTestTypeRes[parameter_value]=list(oneTestTypeRes)
}
# save the results of all types to finalRes4backup
finalRes4backup_TLE[testType]=list(allTestTypeRes)
save(finalRes4backup_TLE,file = paste(savePath,"finalRes4backup_TLE.rdata",sep = ''))
}
return(TRUE)
}
savePath <- "TLE/"
load("simulated_data_list.RData")
main(simu_listAndList,savePath)