forked from hubert0527/COCO-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
119 lines (85 loc) · 3.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import yaml
import argparse
import tensorflow as tf
from models.generator import GeneratorBuilder
from models.discriminator import DiscriminatorBuilder
from models.spatial_prediction import SpatialPredictorBuilder
from models.content_predictor import ContentPredictorBuilder
from coord_handler import CoordHandler
from patch_handler import PatchHandler
from data_loader import DataLoader
from trainer import Trainer
from evaluator import Evaluator
from logger import Logger
from fid_utils import fid
def precompute_parameters(config):
full_image_size = config["data_params"]["full_image_size"]
micro_patch_size = config["data_params"]["micro_patch_size"]
macro_patch_size = config["data_params"]["macro_patch_size"]
# Let NxM micro matches to compose a macro patch,
# `ratio_macro_to_micro` is N or M
ratio_macro_to_micro = [
macro_patch_size[0] // micro_patch_size[0],
macro_patch_size[1] // micro_patch_size[1],
]
num_micro_compose_macro = ratio_macro_to_micro[0] * ratio_macro_to_micro[1]
# Let NxM micro matches to compose a full image,
# `ratio_full_to_micro` is N or M
ratio_full_to_micro = [
full_image_size[0] // micro_patch_size[0],
full_image_size[1] // micro_patch_size[1],
]
num_micro_compose_full = ratio_full_to_micro[0] * ratio_full_to_micro[1]
config["data_params"]["ratio_macro_to_micro"] = ratio_macro_to_micro
config["data_params"]["ratio_full_to_micro"] = ratio_full_to_micro
config["data_params"]["num_micro_compose_macro"] = num_micro_compose_macro
config["data_params"]["num_micro_compose_full"] = num_micro_compose_full
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, required=True)
args = parser.parse_args()
with open(args.config) as f:
config = yaml.load(f)
# Basic protect. Otherwise, I don't know what will happen. OuO
micro_size = config["data_params"]['micro_patch_size']
macro_size = config["data_params"]['macro_patch_size']
full_size = config["data_params"]['full_image_size']
assert macro_size[0] % micro_size[0] == 0
assert macro_size[1] % micro_size[1] == 0
assert full_size[0] % micro_size[0] == 0
assert full_size[1] % micro_size[1] == 0
# Pre-compute some frequently used parameters
precompute_parameters(config)
# Create model builders
coord_handler = CoordHandler(config)
patch_handler = PatchHandler(config)
g_builder = GeneratorBuilder(config)
d_builder = DiscriminatorBuilder(config)
cp_builder = SpatialPredictorBuilder(config)
zp_builder = ContentPredictorBuilder(config)
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
with tf.Session(config=sess_config) as sess:
# Build TF records
real_images = DataLoader(config).build()
# Create controllers
trainer = Trainer(sess, config, real_images,
g_builder, d_builder, cp_builder, zp_builder,
coord_handler, patch_handler)
evaluator = Evaluator(sess, config)
logger = Logger(sess, config, patch_handler)
# Build graphs
print(" [Build] Constructing training graph...")
trainer.build_graph()
print(" [Build] Constructing evaluation graph...")
evaluator.build_graph()
print(" [Build] Constructing logging graph...")
logger.build_graph(trainer)
# Initialize all variables
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
threads = tf.train.start_queue_runners(coord=tf.train.Coordinator())
# Load checkpoint
global_step = logger.load_ckpt()
# Start training
trainer.train(logger, evaluator, global_step)