-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathunit.py
144 lines (114 loc) · 4.28 KB
/
unit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from __future__ import division, print_function
import utils
import argparse
import torch
import itertools
import numpy as np
import math
import sys
import unittest,utils
import pdb
import factorial_crf_tagger
def create_sample_data(tagSize, labelSize, wordCount):
words = ['sample' + str(i) for i in range(wordCount)]
tags = []
labelPtr = [-1] * tagSize
k = -1
for t in range(wordCount):
tag_dict = {}
for i in range(tagSize):
# for labelIdx in range(labelSize[i]):
if labelPtr[i] < labelSize[i]-1:
labelPtr[i] += 1
elif labelPtr[i] == labelSize[i]-1:
labelPtr[i] -= 1
tag_dict['tag'+str(i)] = 'label'+ str(i) + "_" + str(labelPtr[i])
tags.append(utils.freeze_dict(tag_dict))
training_data = (words, tags)
train_tgt_labels = set(tags)
return training_data, train_tgt_labels
class TestBP:
def __init__(self):
self.model = None
def setUp(self, tagger_model, gold_tags, sentLen, lstm_feats):
print("Setting up..")
self.model = tagger_model
self.gold_tags = gold_tags
self.sentLen = sentLen
_, graph, maxVal = tagger_model.belief_propogation_log(gold_tags, sentLen, lstm_feats)
all_sequences, sent_likelihood = self.bruteForce(graph, lstm_feats)
self.assertEqualMarginals(graph, all_sequences, sent_likelihood)
def assertEqualMarginals(self, graph, all_sequences, sent_likelihood):
"""
Check factor/variable marginals are approximately equal
to marginals obtained from brute force inference
"""
# Check variable marginals
threshold = 0.01
eq = True
denom = -float('inf')
maxDiff = -float('inf')
for s, sequence in enumerate(all_sequences):
denom = utils.logSumExp(sent_likelihood[s], denom)
# Iterate over all timesteps
for t in range(graph.T):
for tag in self.model.uniqueTags:
tagBeliefs = graph.getVarByTimestepnTag(t, tag.idx).belief.cpu().data.numpy()
for labelIdx in range(tag.size()):
num = -float('inf')
for s, sequence in enumerate(all_sequences):
if sequence[t][tag.idx]==labelIdx:
num = utils.logSumExp(sent_likelihood[s], num)
# Check difference
# maxDiff = max(maxDiff, np.max(np.abs(tagBeliefs[labelIdx]- np.exp(num-denom))))
tagLogProb = np.exp(num-denom)
maxDiff = max(maxDiff, np.max(np.abs(np.exp(tagBeliefs[labelIdx]) - tagLogProb)))
if maxDiff > threshold:
eq = False
if not eq:
print("Marginals not equal. Max difference of %f" %maxDiff)
else:
print("Passed unit test!")
sys.exit(0)
def bruteForce(self, graph, lstm_feats):
tagRanges = [range(tag.size()) for tag in self.model.uniqueTags]
tag_combinations = list(itertools.product(*tagRanges))
all_timesteps = [tag_combinations] * self.sentLen
all_sequences = list(itertools.product(*all_timesteps))
# sent_likelihood = [-float('inf')] * len(all_sequences)
sent_likelihood = [0] * len(all_sequences)
# calculate tag offsets for lstm features
tag_count = 0
tag_offsets = {}
for tag in self.model.uniqueTags:
tag_offsets[tag.idx] = tag_count
tag_count += tag.size()
# Iterate over all possible sequences
for s, sequence in enumerate(all_sequences):
for t, tags in enumerate(sequence):
for i, tag1 in enumerate(tags):
# LSTM Potential
cur_lstm_feats = lstm_feats[t]
cur_tag_lstm_weights = self.model.lstm_weights[i].cpu().data.numpy()
cur_tag_lstm_feats = cur_lstm_feats[tag_offsets[i]: \
tag_offsets[i]+self.model.uniqueTags.getTagbyIdx(i).size()].cpu().data.numpy()
lstm_vec = utils.logNormalize(cur_tag_lstm_weights + cur_tag_lstm_feats)
sent_likelihood[s] += lstm_vec[tag1]
# Pairwise Potential
for j, tag2 in enumerate(tags):
if i<j:
if (i, j) in self.model.pairs:
pairwise_idx = self.model.pairs.index((i, j))
cur_pairwise_weights = self.model.pairwise_weights[pairwise_idx].cpu().data.numpy()
cur_weight_val = cur_pairwise_weights[tag1][tag2]
sent_likelihood[s] += cur_weight_val
# Transition potential
if t+1!=len(sequence):
next_label = sequence[t+1][i]
trans_weights = self.model.transition_weights[i].cpu().data.numpy()
transition_pot = trans_weights[tag1][next_label]
sent_likelihood[s] += transition_pot
print("Seq Likelihood: %f" %sent_likelihood[s])
return all_sequences, sent_likelihood
if __name__ == '__main__':
unittest.main(gpu=True)