-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtmd_ps2ll.m
106 lines (102 loc) · 4.69 KB
/
tmd_ps2ll.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
function [lat,lon] = tmd_ps2ll(X,Y,SLAT,SLON,HEMI)
% tmd_ps2ll converts geographic coordinates to polar stereographic km.
% This is a simple renaming of the old TMD function mapxy.m.
%
% This function is equivalent to the AMT function ps2ll, but accepts
% kilometers instead of meters, and is written for single precision (even
% overwrites the pi variable to single precision!) so you may find that
% tmd_ps2ll and AMT's ps2ll produce differ by up to a few millimeters.
%
% The original description is as follows:
%
%
% DESCRIPTION:
%
% This subroutine converts from Polar Stereographic (X,Y) coordinates
% to geodetic latitude and longitude for the polar regions. The
% equations are from Snyder, J. P., 1982, Map Projections Used by the U.S.
% Geological Survey, Geological Survey Bulletin 1532, U.S. Government
% Printing Office. See JPL Technical Memorandum 3349-85-101 for further
% details.
%
%
% ARGUMENTS:
%
% Variable I/O Description
%
% X I Polar Stereographic X Coordinate (km)
% Y I Polar Stereographic Y Coordinate (km)
% SLAT I Standard latitude
% SLON I Standard longitude
% HEMI I Hemisphere (char*1, 'S' or 'N',
% not case-sensitive)
% lat O Geodetic Latitude (degrees, +90 to -90)
% lon O Geodetic Longitude (degrees, 0 to 360)
%
% FORTRAN HISTORY
% Written by C. S. Morris - April 29, 1985
% Revised by C. S. Morris - December 11, 1985
% Revised by V. J. Troisi - January 1990
% SGN - provide hemisphere dependency (+/- 1)
% MATLAB HISTORY
% Converted from FORTRAN to Matlab by L. Padman - 25-Oct-2006
% Updated for SLON by L. Padman - 21-Nov-2006
% Updated to keep lon between +/-180 by L. Padman - 01-Nov-2007
% Updated w/ logical indexing by C. Greene - 31-Jul-2018
% Renamed tmd_ps2ll by C. Greene - 11-Apr-2022
%
% Sample call:
% [lat,lon]=tmd_ps2ll(X,Y,SLAT,SLON,HEMI);
%
%*************************************************************************
%
% DEFINITION OF CONSTANTS:
%
% Conversion constant from degrees to radians = 57.29577951.
CDR= 57.29577951;
E2 = 6.694379852e-3; % Eccentricity squared
E = sqrt(E2);
pi = 3.141592654;
%RE = 6378.273; % Original value
RE=6378.1370; % Updated 2/11/08 (see email from
% Shad O'Neel
%
%*************************************************************************
if(upper(HEMI)=='S')
SGN=-1;
else
SGN=+1;
end
if(upper(HEMI)=='N')
Y=-Y;
end
SLAT=abs(SLAT);
SL = SLAT/CDR;
RHO = sqrt(X.^2+Y.^2);
if(RHO<0.1) % Don't calculate if on the equator
lat=90.*SGN;
lon=0.0;
return
else
CM=cos(SL)./sqrt(1.0-E2.*(sin(SL).^2));
T=tan((pi/4.0)-(SL/2))./((1.0-E.*sin(SL))./(1.0+E.*sin(SL))).^(E/2.0);
if(abs(SLAT-90.)<1.e-5)
T=RHO*sqrt((1.+E).^(1+E)*(1-E).^(1-E))/2/RE;
else
T=RHO.*T./(RE.*CM);
end
a1 = 5*E2^2 / 24;
a2 = E2^3 / 12;
a3 = 7*E2^2 / 48;
a4 = 29*E2^3 /240;
a5 = 7*E2^3 /120;
CHI= (pi/2)-2*atan(T);
lat= CHI+((E2/2) + a1 + a2).*sin(2*CHI)+(a3 + a4).*sin(4*CHI)+ ...
a5*sin(6*CHI);
lat= SGN*lat*CDR;
%lon= SGN*(atan2(SGN*X,-SGN*Y)*CDR)+SLON; %Original
lon= -(atan2(-X,Y)*CDR)+SLON;
lon(lon<-180)=lon(lon<-180)+360;
lon(lon>+180)=lon(lon>+180)-360;
end
end