-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEducationData.R
33 lines (30 loc) · 1.92 KB
/
EducationData.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#########################################################################
# R functions for testing independence versus positive quadrant #
# dependence corresponding to the manuscript titled, #
# "Testing for positive quadrant dependence." #
# Date: 06/17/2018 #
###########################################################################
source("https://raw.githubusercontent.com/cftang9/PQD/master/EL_PQD_Library.R")
EducationData = read.csv("https://raw.githubusercontent.com/cftang9/PQD/master/EducationData.csv")
# sample size n=51;
n = length(EducationData$GraRate);
###########################################################################
# Here we provide the scatterplot of the data and pseudo-observations
# to roughly visualize the dependence structure between
# graduation rate and amount spent per person.
par(mar=c(4.5,5,3,0.5))
par(mfrow=c(1,2))
plot(EducationData$GraRate, EducationData$SpentStud,xlab="Graduation rate",ylab="Amount spent per student",main="Scatterplot of the data")
plot(rank(EducationData$GraRate)/(n+1),rank(EducationData$SpentStud)/(n+1),xlab="Graduation rate",ylab="Amount spent per student",main="Scatterplot of pseudo-observations");
# Perform all considered tests:
# It takes less than 2 mins
set.seed(100)
IndvsPQD(EducationData$GraRate,EducationData$SpentStud)
# [1] "1: reject independence; 0: do not rejct independence"
# test_statistic p-value reject_independence critical_value
# EL 1.14408178 0.0958 0 1.43299162
# KS 0.47067846 0.3301 0 0.67176676
# CvM 0.08260912 0.0678 0 0.09068779
# AD 2.77333756 0.2244 0 4.71607090
# spearman 0.21485303 0.0682 0 0.23475566
# kendall 0.15015742 0.0615 0 0.15921569