forked from ermongroup/tile2vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_bigearthnet.py
70 lines (56 loc) · 2.01 KB
/
train_bigearthnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import sys
import os
import torch
from torch import optim
from time import time
tile2vec_dir = '/raid/users/ebarnett/tile2vec/'
sys.path.append('../')
sys.path.append(tile2vec_dir)
from src.datasets import TileTripletsDataset, GetBands, RandomFlipAndRotate, ClipAndScale, ToFloatTensor, triplet_dataloader
from src.tilenet import make_tilenet
from src.training import prep_triplets, train_triplet_epoch
# Environment stuff
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
cuda = torch.cuda.is_available()
# Change these arguments to match your directory and desired parameters
bands = 4
augment = True
batch_size = 50
shuffle = True
num_workers = 4
n_triplets = 100000
dataloader = triplet_dataloader(img_type = 'naip',
tile_dir = '/raid/users/ebarnett/tile2vec/',
bands = 4,
augment = True,
batch_size = 50,
shuffle = True,
num_workers = 4,
n_triplets = 13,
pairs_only = True)
print('Dataloader set up complete.')
in_channels = bands
z_dim = 512
TileNet = make_tilenet(in_channels=in_channels, z_dim=z_dim)
TileNet.train()
if cuda: TileNet.cuda()
print('TileNet set up complete.')
lr = 1e-3
optimizer = optim.Adam(TileNet.parameters(), lr=lr, betas=(0.5, 0.999))
epochs = 50
margin = 10
l2 = 0.01
print_every = 1
save_models = False
model_dir = '/raid/users/ebarnett/tile2vec/models/'
if not os.path.exists(model_dir): os.makedirs(model_dir)
t0 = time()
print('Begin training.................')
for epoch in range(0, epochs):
(avg_loss, avg_l_n, avg_l_d, avg_l_nd) = train_triplet_epoch(
TileNet, cuda, dataloader, optimizer, epoch+1, margin=margin, l2=l2,
print_every=print_every, t0=t0)
# Save model after last epoch
if save_models:
model_fn = os.path.join(model_dir, 'TileNet_epoch50.ckpt')
torch.save(TileNet.state_dict(), model_fn)