-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
70 lines (61 loc) · 2.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from CycleGAN_ls import CycleGAN_LightningSystem
from dataModule import ImageTransform, WatercolorDataset, WatercolorDataModule
from discriminator import CycleGAN_Discriminator
from generator import CycleGAN_Unet_Generator
import os
import glob
import random
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.callbacks import ModelCheckpoint
# Seed -------------------------------------------------------------------
def seed_everything(seed):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
# Config -----------------------------------------------------------------
data_dir = "/content/drive/MyDrive/data/"
transform = ImageTransform(img_size=256)
batch_size = 1
lr = {
"G": 0.0002,
"D": 0.0002
}
epoch = 160
seed = 42
reconstr_w = 10
id_w = 5
seed_everything(seed)
# DataModule -----------------------------------------------------------------
dm = WatercolorDataModule(data_dir, transform, batch_size, seed=seed)
G_basestyle = CycleGAN_Unet_Generator()
G_stylebase = CycleGAN_Unet_Generator()
D_base = CycleGAN_Discriminator()
D_style = CycleGAN_Discriminator()
# LightningModule --------------------------------------------------------------
model = CycleGAN_LightningSystem(G_basestyle, G_stylebase, D_base, D_style,
lr, transform, reconstr_w, id_w)
# Callback
checkpoint_callback = ModelCheckpoint(dirpath="/content/drive/MyDrive/checkpoint",
period=10)
# Trainer --------------------------------------------------------------
trainer = Trainer(
logger=False,
max_epochs=epoch,
gpus=1,
checkpoint_callback=checkpoint_callback,
reload_dataloaders_every_epoch=True,
num_sanity_val_steps=0,
# resume_from_checkpoint="/content/drive/MyDrive/checkpoint/epoch=279-step=100799.ckpt"
)
# Train ------------------------------------------------------------------------
trainer.fit(model, datamodule=dm)