-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCycleGAN_ls.py
131 lines (104 loc) · 5.52 KB
/
CycleGAN_ls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import pytorch_lightning as pl
from torch import optim, nn
class CycleGAN_LightningSystem(pl.LightningModule):
def __init__(self, G_basestyle, G_stylebase, D_base, D_style, lr, transform, reconstr_w=10, id_w=2):
super(CycleGAN_LightningSystem, self).__init__()
self.G_basestyle = G_basestyle
self.G_stylebase = G_stylebase
self.D_base = D_base
self.D_style = D_style
self.lr = lr
self.transform = transform
self.reconstr_w = reconstr_w
self.id_w = id_w
self.cnt_train_step = 0
self.step = 0
self.mae = nn.L1Loss()
self.generator_loss = nn.MSELoss()
self.discriminator_loss = nn.MSELoss()
self.losses = []
self.G_mean_losses = []
self.D_mean_losses = []
self.validity = []
self.reconstr = []
self.identity = []
def configure_optimizers(self):
self.g_basestyle_optimizer = optim.Adam(self.G_basestyle.parameters(), lr=self.lr["G"], betas=(0.5, 0.999))
self.g_stylebase_optimizer = optim.Adam(self.G_stylebase.parameters(), lr=self.lr["G"], betas=(0.5, 0.999))
self.d_base_optimizer = optim.Adam(self.D_base.parameters(), lr=self.lr["D"], betas=(0.5, 0.999))
self.d_style_optimizer = optim.Adam(self.D_style.parameters(), lr=self.lr["D"], betas=(0.5, 0.999))
return [self.g_basestyle_optimizer, self.g_stylebase_optimizer, self.d_base_optimizer, self.d_style_optimizer], []
def training_step(self, batch, batch_idx, optimizer_idx):
base_img, style_img = batch
b = base_img.size()[0]
valid = torch.ones(b, 1, 30, 30).cuda()
fake = torch.zeros(b, 1, 30, 30).cuda()
# Train Generator
if optimizer_idx == 0 or optimizer_idx == 1:
# Validity
# MSELoss
val_base = self.generator_loss(self.D_base(self.G_stylebase(style_img)), valid)
val_style = self.generator_loss(self.D_style(self.G_basestyle(base_img)), valid)
val_loss = (val_base + val_style) / 2
# Reconstruction
reconstr_base = self.mae(self.G_stylebase(self.G_basestyle(base_img)), base_img)
reconstr_style = self.mae(self.G_basestyle(self.G_stylebase(style_img)), style_img)
reconstr_loss = (reconstr_base + reconstr_style) / 2
# Identity
id_base = self.mae(self.G_stylebase(base_img), base_img)
id_style = self.mae(self.G_basestyle(style_img), style_img)
id_loss = (id_base + id_style) / 2
# Loss Weight
G_loss = val_loss + self.reconstr_w * reconstr_loss + self.id_w * id_loss
return {"loss": G_loss, "validity": val_loss, "reconstr": reconstr_loss, "identity": id_loss}
# Train Discriminator
elif optimizer_idx == 2 or optimizer_idx == 3:
# MSELoss
D_base_gen_loss = self.discriminator_loss(self.D_base(self.G_stylebase(style_img)), fake)
D_style_gen_loss = self.discriminator_loss(self.D_style(self.G_basestyle(base_img)), fake)
D_base_valid_loss = self.discriminator_loss(self.D_base(base_img), valid)
D_style_valid_loss = self.discriminator_loss(self.D_style(style_img), valid)
D_gen_loss = (D_base_gen_loss + D_style_gen_loss) / 2
# Loss Weight
D_loss = (D_gen_loss + D_base_valid_loss + D_style_valid_loss) / 3
# Count up
self.cnt_train_step += 1
return {"loss": D_loss}
def training_epoch_end(self, outputs):
self.step += 1
avg_loss = sum([torch.stack([x["loss"] for x in outputs[i]]).mean().item() / 4 for i in range(4)])
G_mean_loss = sum([torch.stack([x["loss"] for x in outputs[i]]).mean().item() / 2 for i in [0, 1]])
D_mean_loss = sum([torch.stack([x["loss"] for x in outputs[i]]).mean().item() / 2 for i in [2, 3]])
validity = sum([torch.stack([x["validity"] for x in outputs[i]]).mean().item() / 2 for i in [0, 1]])
reconstr = sum([torch.stack([x["reconstr"] for x in outputs[i]]).mean().item() / 2 for i in [0, 1]])
identity = sum([torch.stack([x["identity"] for x in outputs[i]]).mean().item() / 2 for i in [0, 1]])
self.losses.append(avg_loss)
self.G_mean_losses.append(G_mean_loss)
self.D_mean_losses.append(D_mean_loss)
self.validity.append(validity)
self.reconstr.append(reconstr)
self.identity.append(identity)
if self.step % 10 == 0:
# Display Model Output
target_img_paths = glob.glob("DATA/photo_jpg_less/*.jpg")[:4]
target_imgs = [self.transform(Image.open(path), phase="test") for path in target_img_paths]
target_imgs = torch.stack(target_imgs, dim=0)
target_imgs = target_imgs.cuda()
gen_imgs = self.G_basestyle(target_imgs)
gen_img = torch.cat([target_imgs, gen_imgs], dim=0)
# Reverse Normalization
gen_img = gen_img * 0.5 + 0.5
gen_img = gen_img * 255
joined_images_tensor = make_grid(gen_img, nrow=4, padding=2)
joined_images = joined_images_tensor.detach().cpu().numpy().astype(int)
joined_images = np.transpose(joined_images, [1,2,0])
# Visualize
fig = plt.figure(figsize=(18, 8))
plt.imshow(joined_images)
plt.axis("off")
plt.title(f"Epoch {self.step}")
plt.show()
plt.clf()
plt.close()
return None