forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransform.py
236 lines (191 loc) · 8.53 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions to transform raw embeddings into more meaningful representations.
"""
import numpy as np
import pandas as pd
from sklearn import decomposition
import tensorflow.compat.v1 as tf
from correct_batch_effects_wdn import metadata
def keep_rows_by_multi_index(df, multi_index_name, multi_index_value):
"""Keeps rows with given multi-index values from a DataFrame.
Args:
df: DataFrame with samples as rows and multi-indices.
multi_index_name: String, the name of the multi-index.
multi_index_value: String or a list of strings, the values of the
multi-index.
Returns:
A subset of the DataFrame with only the specified rows.
Raises:
ValueError: Multi-index to drop is not contained in the DataFrame.
"""
if multi_index_name not in df.index.names:
raise ValueError(
'Multi-index %s is not contained in the DataFrame.' % multi_index_name)
if not isinstance(multi_index_value, list):
multi_index_value = [multi_index_value]
return df[df.index.get_level_values(
level=multi_index_name).isin(multi_index_value)]
def get_negative_controls(df):
"""Get negative control samples from a data frame of samples.
Args:
df: DataFrame with samples as rows and metadata.TREATMENT_GROUP as an index.
Returns:
The input DataFrame filtered to negative control samples.
"""
treatment_name = metadata.TREATMENT_GROUP
return keep_rows_by_multi_index(df, treatment_name, metadata.NEGATIVE_CONTROL)
def eig_symmetric(m):
"""Get the eigenvalues and eigenvectors for a real, symmetric matrix.
Uses linalg.eigh, which is optimized for symmetric matrices. Eigenvalues
are then sorted in descending order.
Args:
m: a real, symmetric matrix
Returns:
A tuple consisting of a vector of eigenvalues in descending order and
a matrix of eigenvectors (eigenvectors are columns).
"""
lambda_m, q_m = np.linalg.eigh(m)
idx = lambda_m.argsort()[::-1] # sort by eigenvalues, descending
return lambda_m[idx], q_m[:, idx]
def factor_analysis(embedding_dataframe, fraction, n_components):
"""Projects the embeddings by factor analysis using negative controls.
It would be interesting to explore factor analysis because it is a natural way
to extract important latent features from the data, and PCA is actually a
special case of factor analysis. When the variances of the error term in
factor analysis are identical and go towards zero, the posterior estimate of
the latent variables becomes exactly PCA.
TVN is essentially PCA without dimension reduction. Compared with TVN, the
drawback of factor analysis is that it requires to specify the number of
latent variables. As an ad-hoc approach, I would suggest specifying it as the
number of unique treatments.
Args:
embedding_dataframe: Pandas dataframe of the embeddings with each row as a
sample.
fraction: Fraction of negative control samples used to estimate parameters
in factor analysis.
n_components: Number of latent variables. If -1, specify n_components as
the number of unique treatments.
Returns:
A Pandas dataframe with a reduced number of dimensions.
"""
# specify the number of latent variables as the number of unique treatments,
# excluding the negative control
if n_components == -1:
n_components = embedding_dataframe.reset_index()[[
metadata.COMPOUND, metadata.CONCENTRATION
]].drop_duplicates().shape[0] - 1
factor_analysis_object = decomposition.FactorAnalysis(
n_components=n_components)
factor_analysis_object.fit(
get_negative_controls(embedding_dataframe).sample(frac=fraction,
axis=0).values)
return pd.DataFrame(
data=factor_analysis_object.transform(embedding_dataframe.values),
index=embedding_dataframe.index)
def get_bootstrap_sample(df):
"""Get a bootstrap sample of a DataFrame.
To make different bootstrap samples comparable, we assume that the
experimental condition, i.e., the layout of batches, plates and
wells, stays the same. Otherwise the bootstrap samples would vary
considerably. Thus, the bootstrapping is conducted for the embedding vectors
within each well. Without making any distributional assumption, nonparametric
bootstrapping is performed.
Args:
df: DataFrame with samples as rows. Should have a MultiIndex with levels
batch, plate and well
Returns:
A bootstrap sample of the DataFrame.
"""
df_list = []
levels = [metadata.BATCH, metadata.PLATE, metadata.WELL]
if metadata.TIMEPOINT in df.index.names:
levels.append(metadata.TIMEPOINT)
if metadata.SEQUENCE in df.index.names:
levels.append(metadata.SEQUENCE)
for _, df_well in df.groupby(level=levels):
index = np.random.choice(df_well.shape[0], size=df_well.shape[0])
df_list.append(df_well.iloc[index, :])
return pd.concat(df_list)
def normalize_df_by_coral(df,
center,
center_cov,
level_to_normalize=metadata.BATCH,
lambda_reg=1.0):
"""Remove batch effects by variants of CORAL method.
This function is adapted from @geoffd's colab:
https://drive.google.com/open?id=0B-umIy5UPrYIVWJYYnZaMzNRNGc.
The main idea of CORAL method is (1) finding an affine transformation on each
batch (or plate) such that after transformation the covariances of the
negative control on each batch (or plate) are the same as the overall
covariance of the negative control before transformation; (2) applying each
learned transformation to all compounds on each batch (or plate).
Args:
df: Pandas dataframe with complete multi-index of metadata and embeddings
center: A boolean giving whether the embedding vectors are centered by the
mean of those of the negative control on each batch (or plate)
center_cov: A boolean giving whether the covariance is centered
level_to_normalize: (optional) A string giving the level on which CORAL
method is applied
lambda_reg: the weight of the regularization term (i.e., an identity matrix)
added to the estimated covariance on each batch (or plate)
Returns:
A Pandas dataframe transformed by CORAL method, which has the same
multi-index as df.
"""
normalized = []
for _, df_level in df.groupby(level=level_to_normalize):
df_control = df_level.xs(
metadata.NEGATIVE_CONTROL,
level=metadata.TREATMENT_GROUP,
drop_level=False)
control_mean = np.mean(df_control, axis=0)
if center_cov:
control_cov = np.cov(df_control, rowvar=False)
else:
control_cov = (df_control.T.dot(df_control)) / df_control.shape[0]
# regularize
control_cov += lambda_reg * np.identity(control_cov.shape[1])
lambda_cov, q_cov = eig_symmetric(control_cov)
if center:
df_level -= control_mean
normalized_df = (df_level.dot(q_cov) / np.sqrt(lambda_cov)).dot(q_cov.T)
normalized.append(normalized_df)
return pd.concat(normalized)
def coral_without_mean_shift_batch(df):
"""Apply a CORAL normalization without mean shift on batch level."""
return normalize_df_by_coral(df, center=False, center_cov=True)
def transform_df(df, rotate_mat, shift_vec):
"""Transform a DataFrame by rotating and shifting.
Denote each row of df by x. Mathematically, it transforms x to
x * rotate_mat^T + shift_vec^T. The transpose is due to that x is a row
vector.
Args:
df: DataFrame with samples as rows
rotate_mat: 2-D NumPy array of size p-by-p
shift_vec: 2-D NumPy array of size p-by-1
Returns:
A transformed DataFrame.
"""
return df.dot(rotate_mat.T) + np.squeeze(shift_vec)
def sum_of_square(a):
"""Sum of squared elements of Tensor a."""
return tf.reduce_sum(tf.square(a))
def drop_unevaluated_comp(df):
"""Drop unevaluated compounds from a dataframe."""
df = df[df.index.get_level_values(
level=metadata.TREATMENT_GROUP) != metadata.NEGATIVE_CONTROL]
df = df[df.index.get_level_values(level=metadata.MOA) != metadata.UNKNOWN]
return df