-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpvl_stan.py
59 lines (53 loc) · 2.02 KB
/
pvl_stan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2017 Carolina Feher da Silva <carolfsu@gmail.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""Fits the PVL model to the experimental data."""
import os
import sys
import argparse
from bdata import bdata, N, NTRIALS
from mpl_stan import get_stan_model
SFN = 'pvl_samples_{:04d}.csv'
def fit_pvl_stan():
"""Fits the PVL model to the experimental data."""
parser = argparse.ArgumentParser(
description='Fits the PVL(2) model to data using Stan.')
parser.add_argument('chains', help='number of chains', type=int)
parser.add_argument(
'--iter', help='number of iterations (default 11000)', type=int,
default=11000)
parser.add_argument(
'--warmup', help='number of warmup samples (default 1000)', type=int,
default=1000)
args = parser.parse_args()
chains = args.chains
if chains < 1:
print('Invalid number of chains.')
sys.exit(0)
# Sample
stan_model = get_stan_model('model-pvl.stan', 'model-pvl')
model_dat = {
'T': NTRIALS,
'N': N,
'x': [x for x, y in bdata],
'y': [y for x, y in bdata],
}
sample_file_name = SFN.format(args.warmup)
sample_file_name = os.path.join(os.getcwd(), sample_file_name)
fit = stan_model.sampling(
data=model_dat, iter=args.iter, warmup=args.warmup, chains=chains,
refresh=10, sample_file=sample_file_name)
print(fit)
if __name__ == '__main__':
fit_pvl_stan()