-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmnist_bp.py
102 lines (78 loc) · 2.79 KB
/
mnist_bp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import argparse
import network
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
from tqdm import tqdm
from util import accuracy, set_seed
class Opts:
layer_size = 2000
batch_size = 1000
lr = 0.1
weight_decay = 0
epochs = 60
seed = 0
device = 'cuda'
@torch.no_grad()
def test(network_bp, test_loader, opts):
all_outputs = []
all_labels = []
for (x_test, y_test) in test_loader:
x_test, y_test = x_test.to(opts.device), y_test.to(opts.device)
x_test = x_test.view(x_test.shape[0], -1)
acts = network_bp(x_test)
all_outputs.append(acts)
all_labels.append(y_test)
all_outputs = torch.cat(all_outputs)
all_labels = torch.cat(all_labels)
top1 = accuracy(all_outputs, all_labels, topk=(1,))[0]
return top1
def train(network_bp, optimizer, train_loader, opts):
running_loss = 0.
for (x, y_ground) in train_loader:
x, y_ground = x.to(opts.device), y_ground.to(opts.device)
x = x.view(opts.batch_size, -1)
with torch.enable_grad():
ys = network_bp(x)
loss = F.cross_entropy(ys, y_ground)
loss.backward()
running_loss += loss.detach()
optimizer.step()
optimizer.zero_grad()
running_loss /= len(train_loader)
return running_loss
def main(opts):
set_seed(opts.seed)
T_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
T_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_loader = DataLoader(MNIST("~/data", train=True, download=True, transform=T_train),
batch_size=opts.batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(MNIST("~/data", train=False, download=True, transform=T_test),
batch_size=opts.batch_size, shuffle=True)
size = opts.layer_size
network_bp = network.Network(dims=[28*28, size, size, size, 10], ff=False).to(opts.device)
print(network_bp)
optimizer = torch.optim.SGD(network_bp.parameters(),
lr=opts.lr,
weight_decay=opts.weight_decay)
best_acc = 0.
for step in range(1, opts.epochs+1):
running_ce = train(network_bp, optimizer, train_loader, opts)
top1 = test(network_bp, test_loader, opts)
if top1 > best_acc:
best_acc = top1
print(f"Step {step:04d} CE: {running_ce:.4f} acc@1: {top1:.2f}")
print('Best acc:', best_acc)
if __name__ == '__main__':
opts = Opts()
main(opts)