-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathREADME.Rmd
57 lines (37 loc) · 2.66 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
output: github_document
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# mobster <a href='https://caravagnalab.github.io/mobster'><img src='man/figures/logo.png' align="right" height="139" /></a>
<!-- badges: start -->
![check-master](https://github.com/caravagnalab/mobster/workflows/check-master/badge.svg?branch=master)
![check-development](https://github.com/caravagnalab/mobster/workflows/check-development/badge.svg?branch=development)
[![Lifecycle: stable](https://img.shields.io/badge/lifecycle-stable-brightgreen.svg)](https://www.tidyverse.org/lifecycle/#stable)
<!-- badges: end -->
`mobster` is a package that implements a model-based approach for _subclonal deconvolution_ of cancer genome sequencing data ([Caravagna et al; PMID: 32879509](https://www.nature.com/articles/s41588-020-0675-5#:~:text=Subclonal%20reconstruction%20methods%20based%20on,and%20infer%20their%20evolutionary%20history.&text=We%20present%20a%20novel%20approach,learning%20with%20theoretical%20population%20genetics.)).
The package integrates evolutionary theory (i.e., population) and Machine-Learning to analyze (e.g., whole-genome) bulk data from cancer samples. This analysis relates to clustering; we approach it via a maximum-likelihood formulation of Dirichlet mixture models, and use bootstrap routines to assess the confidence of the parameters. The package implements S3 objects to visualize the data and the fits.
#### Citation
[![](https://img.shields.io/badge/doi-10.1038/s41588--020--0675--5-red.svg)](https://doi.org/10.1038/s41588-020-0675-5)
If you use `mobster`, please cite:
* G. Caravagna, T. Heide, M.J. Williams, L. Zapata, D. Nichol, K. Chkhaidze, W. Cross, G.D. Cresswell, B. Werner, A. Acar, L. Chesler, C.P. Barnes, G. Sanguinetti, T.A. Graham, A. Sottoriva. Subclonal reconstruction of tumors by using machine learning and population genetics. Nature Genetics 52, 898–907 (2020).
#### Help and support
[![](https://img.shields.io/badge/GitHub%20Pages-https://caravagnalab.github.io/mobster/-steelblue.svg)](https://caravagnalab.github.io/mobster)
### Installation
You can install the released version of `mobster` from
[GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("caravagnalab/mobster")
```
-----
#### Copyright and contacts
Giulio Caravagna. Cancer Data Science (CDS) Laboratory.
[![](https://img.shields.io/badge/CDS%20Lab%20Github-caravagnalab-seagreen.svg)](https://github.com/caravagnalab)
[![](https://img.shields.io/badge/CDS%20Lab%20webpage-https://www.caravagnalab.org/-red.svg)](https://www.caravagnalab.org/)