Skip to content

Commit

Permalink
Fixed dependency issues
Browse files Browse the repository at this point in the history
  • Loading branch information
irzamsarfraz committed Jul 21, 2024
1 parent 9ae0ae3 commit 9d6ce40
Show file tree
Hide file tree
Showing 5 changed files with 47 additions and 37 deletions.
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -23,14 +23,14 @@ Imports: plyr, foreach, ggplot2, RColorBrewer, grid, scales, gtable,
MCMCprecision, ggrepel, Rtsne, withr,
scater (>= 1.14.4), scran, dbscan,
DelayedArray, stringr, ComplexHeatmap, gridExtra,
circlize
circlize, dendextend, ggdendro, pROC
Suggests: testthat, knitr, roxygen2, rmarkdown, biomaRt, covr,
BiocManager, BiocStyle, TENxPBMCData, singleCellTK, M3DExampleData
LinkingTo: Rcpp, RcppEigen
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.1
RoxygenNote: 7.3.2
BugReports: https://github.com/campbio/celda/issues
biocViews: SingleCell, GeneExpression, Clustering, Sequencing, Bayesian, ImmunoOncology, DataImport
NeedsCompilation: yes
37 changes: 21 additions & 16 deletions R/findMarkersTree.R
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
#' are solely defined by the absence of markers. Default is TRUE.
#' @param consecutiveOneoff Logical. Whether or not to allow one-off splits at
#' consecutive brances. Default is FALSE.
#' @param autoMetaclusters. Logical. Whether to identify metaclusters prior to
#' @param autoMetaclusters Logical. Whether to identify metaclusters prior to
#' creating the tree based on the distance between clusters in a UMAP
#' dimensionality reduction projection. A metacluster is simply a large
#' cluster that includes several clusters within it. Default is TRUE.
Expand Down Expand Up @@ -2339,18 +2339,21 @@ subUnderscore <- function(x, n) unlist(lapply(
#' @param boxColor Character value. Color of rule labels. Default is black.
#' @examples
#' # Generate simulated single-cell dataset using celda
#' sim_counts <- celda::simulateCells("celda_CG", K = 4, L = 10, G = 100)
#' sce <- celda::simulateCells("celda_CG", K = 4, L = 10, G = 100)
#'
#' # Select top features
#' sce <- selectFeatures(sce)
#'
#' # Celda clustering into 5 clusters & 10 modules
#' cm <- celda_CG(sim_counts$counts, K=5, L=10, verbose=FALSE)
#' sce <- celda_CG(sce, K=5, L=10, verbose=FALSE)
#'
#' # Get features matrix and cluster assignments
#' factorized <- factorizeMatrix(sim_counts$counts, cm)
#' features <- factorized$proportions$cell
#' class <- clusters(cm)$z
#' factorizedCounts <- factorizeMatrix(sce, type = "counts")
#' featureMatrix <- factorizedCounts$counts$cell
#' classes <- as.integer(celdaClusters(sce))
#'
#' # Generate Decision Tree
#' DecTree <- findMarkersTree(features,class,threshold = 1)
#' DecTree <- findMarkersTree(featureMatrix, classes)
#'
#' # Plot dendrogram
#' plotDendro(DecTree)
Expand Down Expand Up @@ -2634,23 +2637,25 @@ plotDendro <- function(tree,
#' @return A heatmap visualizing the counts matrix for the cells and genes at
#' the specified branch point.
#' @examples
#' # Generate simulated single-cell dataset using celda
#' sim_counts <- celda::simulateCells("celda_CG", K = 4, L = 10, G = 100)
#' sce <- celda::simulateCells("celda_CG", K = 4, L = 10, G = 100)
#'
#' # Select top features
#' sce <- selectFeatures(sce)
#'
#' # Celda clustering into 5 clusters & 10 modules
#' cm <- celda_CG(sim_counts$counts, K=5, L=10, verbose=FALSE)
#' sce <- celda_CG(sce, K=5, L=10, verbose=FALSE)
#'
#' # Get features matrix and cluster assignments
#' factorized <- factorizeMatrix(sim_counts$counts, cm)
#' features <- factorized$proportions$cell
#' class <- clusters(cm)$z
#' factorizedCounts <- factorizeMatrix(sce, type = "counts")
#' featureMatrix <- factorizedCounts$counts$cell
#' classes <- as.integer(celdaClusters(sce))
#'
#' # Generate Decision Tree
#' DecTree <- findMarkersTree(features,class,threshold = 1)
#' DecTree <- findMarkersTree(featureMatrix, classes)
#'
#' # Plot example heatmap
#' plotMarkerHeatmap(DecTree, sim_counts$counts, branchPoint = "top_level",
#' featureLabels = paste0("L",clusters(cm)$y))
#' plotMarkerHeatmap(DecTree, featureMatrix, branchPoint = "top_level",
#' featureLabels = rownames(featureMatrix))
#'
#' @export
plotMarkerHeatmap <- function(tree, counts, branchPoint, featureLabels,
Expand Down
8 changes: 4 additions & 4 deletions man/findMarkersTree.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

15 changes: 9 additions & 6 deletions man/plotDendro.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

20 changes: 11 additions & 9 deletions man/plotMarkerHeatmap.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit 9d6ce40

Please sign in to comment.