-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathoptimizers.py
354 lines (282 loc) · 12.7 KB
/
optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 15 15:46:35 2021
Code for ZORO, by Cai, McKenzie ,Yin, and Zhang
"""
import numpy as np
import numpy.linalg as la
from base import BaseOptimizer
from Cosamp import cosamp
class ZORO(BaseOptimizer):
'''
ZORO for black box optimization.
'''
def __init__(self, x0, f, params, function_budget=10000, prox=None,
function_target=None):
super().__init__()
self.function_evals = 0
self.function_budget = function_budget
self.function_target = function_target
self.f = f
self.x = x0
self.n = len(x0)
self.t = 0
self.delta = params["delta"]
self.sparsity = params["sparsity"]
self.step_size = params["step_size"]
self.num_samples = params["num_samples"]
self.prox = prox
# Define sampling matrix
# TODO (?): add support for other types of random sampling directions
Z = 2*(np.random.rand(self.num_samples, self.n) > 0.5) - 1
cosamp_params = {"Z": Z, "delta": self.delta, "maxiterations": 10,
"tol": 0.5, "sparsity": self.sparsity}
self.cosamp_params = cosamp_params
# Handle the (potential) proximal operator
def Prox(self, x):
if self.prox is None:
return x
else:
return self.prox.prox(x, self.step_size)
def CosampGradEstimate(self):
'''
Gradient estimation sub-routine.
'''
maxiterations = self.cosamp_params["maxiterations"]
Z = self.cosamp_params["Z"]
delta = self.cosamp_params["delta"]
sparsity = self.cosamp_params["sparsity"]
tol = self.cosamp_params["tol"]
num_samples = np.size(Z, 0)
x = self.x
f = self.f
y = np.zeros(num_samples)
function_estimate = 0
for i in range(num_samples):
y_temp = f(x + delta*np.transpose(Z[i,:]))
y_temp2 = f(x)
function_estimate += y_temp2
y[i] = (y_temp - y_temp2)/(np.sqrt(num_samples)*delta)
self.function_evals += 2
function_estimate = function_estimate/num_samples
Z = Z/np.sqrt(num_samples)
grad_estimate = cosamp(Z, y, sparsity, tol, maxiterations)
return grad_estimate, function_estimate
def step(self):
'''
Take step of optimizer
'''
grad_est, f_est = self.CosampGradEstimate()
self.fd = f_est
# Note that if no prox operator was specified then self.prox is the
# identity mapping.
self.x = self.Prox(self.x -self.step_size*grad_est)
if self.reachedFunctionBudget(self.function_budget, self.function_evals):
# if budget is reached return current iterate
return self.function_evals, self.x, 'B'
if self.function_target is not None:
if self.reachedFunctionTarget(self.function_target, f_est):
# if function target is reached terminate
return self.function_evals, self.x, 'T'
self.t += 1
return self.function_evals, False, False
class AdaZORO(BaseOptimizer):
'''
ZORO with adaptive sampling for black box optimization.
'''
def __init__(self, x0, f, params, function_budget=10000, prox=None,
function_target=None):
super().__init__()
self.function_evals = 0
self.function_budget = function_budget
self.function_target = function_target
self.f = f
self.x = x0
self.n = len(x0)
self.t = 0
self.delta = params["delta"]
self.sparsity = params["sparsity"]
self.step_size = params["step_size"]
#self.num_samples = params["num_samples"]
self.num_samples_constant = params["num_samples_constant"]
self.num_samples = self.update_num_samples()
self.phi_cosamp = params["phi_cosamp"]
self.phi_lstsq = params["phi_lstsq"]
self.compessible_constant = params["compessible_constant"]
self.prox = prox
self.compessible = True
self.saved_y = np.zeros(0)
self.saved_function_estimate = 0
# Define sampling matrix
# TODO (?): add support for other types of random sampling directions
Z = 2*(np.random.rand(self.num_samples, self.n) > 0.5) - 1
cosamp_params = {"Z": Z, "delta": self.delta, "maxiterations": 10,
"tol": 0.5}
self.cosamp_params = cosamp_params
# Handle the (potential) proximal operator
def Prox(self, x):
if self.prox is None:
return x
else:
return self.prox.prox(x, self.step_size)
def update_num_samples(self):
num_samples = int(np.ceil(self.num_samples_constant * self.sparsity * np.log(self.n)))
return num_samples
def CosampGradEstimate(self):
'''
Gradient estimation sub-routine.
'''
maxiterations = self.cosamp_params["maxiterations"]
self.num_samples = self.update_num_samples()
sparsity = self.sparsity
delta = self.cosamp_params["delta"]
tol = self.cosamp_params["tol"]
Z = self.cosamp_params["Z"]
Z = Z[0:self.num_samples,:]
x = self.x
f = self.f
phi = self.phi_cosamp
function_estimate = 0
function_evals = 0
y = np.zeros(self.num_samples)
save_queries_num = len(self.saved_y)
y[0:save_queries_num] = self.saved_y * np.sqrt(save_queries_num / self.num_samples)
function_estimate = self.saved_function_estimate * save_queries_num
# We could reuse the queries from letsq/cosamp in the same iteration
# but we didn't do it for simplify the implementation
for i in range(save_queries_num, self.num_samples):
y_temp = f(x + delta*np.transpose(Z[i,:]))
y_temp2 = f(x)
function_estimate += y_temp2
y[i] = (y_temp - y_temp2)/(np.sqrt(self.num_samples)*delta)
function_evals += 2
function_estimate = function_estimate/self.num_samples
Z = Z/np.sqrt(self.num_samples)
grad_estimate = cosamp(Z, y, sparsity, tol, maxiterations)
# print('cosamp error',la.norm(Z @ grad_estimate - y)/la.norm(y) ) ################
if la.norm(Z @ grad_estimate - y)/la.norm(y) > phi:
self.saved_y = y
self.saved_function_estimate = function_estimate
return grad_estimate, function_estimate, False, function_evals
else:
self.saved_y = np.zeros(0)
self.saved_function_estimate = 0
return grad_estimate, function_estimate, True, function_evals
def SparseLstSq(self, old_grad_est, compessible):
'''
Least square with fixed support
'''
Z = self.cosamp_params["Z"]
delta = self.cosamp_params["delta"]
if compessible == True:
sparsity = self.sparsity
num_samples = sparsity
old_support = (old_grad_est != 0)
Z_restricted = np.zeros((num_samples,self.n))
Z_restricted[:,old_support] = Z[0:num_samples,old_support]
else:
sparsity = np.count_nonzero(old_grad_est)
num_samples = int(self.compessible_constant * sparsity)
#Z = self.cosamp_params["Z"]
Z = Z[0:num_samples,:]
x = self.x
f = self.f
phi = self.phi_lstsq
y = np.zeros(num_samples)
y_restricted = np.zeros(num_samples)
function_estimate = 0
function_evals = 0
if compessible == True:
for i in range(num_samples):
y_temp = f(x + delta*np.transpose(Z[i,:]))
y_temp_restricted = f(x + delta*np.transpose(Z_restricted[i,:]))
y_mid = f(x)
function_estimate += y_mid
y[i] = (y_temp - y_mid)/(np.sqrt(num_samples)*delta)
y_restricted[i] = (y_temp_restricted - y_mid)/(np.sqrt(num_samples)*delta)
function_evals += 3
function_estimate = function_estimate/num_samples
Z = Z/np.sqrt(num_samples)
grad_est_non_zeros,_ ,_ ,_ = la.lstsq(Z[:,old_support], y_restricted, rcond=None)
# print('least sq error',la.norm(Z[:,old_support] @ grad_est_non_zeros - y)/la.norm(y) ) ################
if la.norm(Z[:,old_support] @ grad_est_non_zeros - y)/la.norm(y) > phi:
self.saved_y = y
self.saved_function_estimate = function_estimate
return grad_est_non_zeros, function_estimate, False, function_evals
else:
self.saved_y = np.zeros(0)
self.saved_function_estimate = 0
grad_est = np.zeros(self.n)
grad_est[old_support] = grad_est_non_zeros
return grad_est, function_estimate, True, function_evals
else:
save_queries_num = len(self.saved_y)
if save_queries_num >= num_samples:
y = self.saved_y[0:num_samples] * np.sqrt(save_queries_num / num_samples)
function_estimate = self.saved_function_estimate * num_samples
else:
y[0:save_queries_num] = self.saved_y * np.sqrt(save_queries_num / num_samples)
function_estimate = self.saved_function_estimate * save_queries_num
for i in range(save_queries_num, num_samples):
y_temp = f(x + delta*np.transpose(Z[i,:]))
y_mid = f(x)
function_estimate += y_mid
y[i] = (y_temp - y_mid)/(np.sqrt(num_samples)*delta)
function_evals += 2
function_estimate = function_estimate/num_samples
Z = Z/np.sqrt(num_samples)
grad_est,_ ,_ ,_ = la.lstsq(Z, y, rcond=None)
self.saved_y = np.zeros(0)
self.saved_function_estimate = 0
return grad_est, function_estimate, True, function_evals
def getMoreZ(self):
'''
Get more rows in Z matrix
'''
Z = self.cosamp_params["Z"]
self.num_samples = self.update_num_samples()
more_rows = self.num_samples - np.size(Z, 0)
if more_rows > 0:
Z_new = 2*(np.random.rand(more_rows, self.n) > 0.5) - 1
self.cosamp_params["Z"] = np.concatenate((Z, Z_new), axis=0)
def step(self):
'''
Take step of optimizer
'''
print('Current Sparsity: ', self.sparsity)
good_est = False
if (self.t > 0):
grad_est, f_est, good_est, function_evals = self.SparseLstSq(self.grad_est, self.compessible)
self.function_evals += function_evals
if good_est == True:
self.grad_est = grad_est
self.fd = f_est
self.x = self.Prox(self.x - self.step_size * grad_est)
else:
grad_est, f_est, good_est, function_evals = self.CosampGradEstimate()
self.function_evals += function_evals
while good_est == False:
if self.num_samples <= int(self.compessible_constant * self.n):
self.sparsity += 1
self.getMoreZ()
grad_est, f_est, good_est, function_evals = self.CosampGradEstimate()
self.function_evals += function_evals
else:
self.compessible = False
grad_est, f_est, good_est, function_evals = self.SparseLstSq(np.ones(self.n), self.compessible)
self.function_evals += function_evals
#self.saved_y = np.zeros(0)
#self.saved_function_estimate = 0
self.grad_est = grad_est
self.fd = f_est
self.x = self.Prox(self.x - self.step_size * grad_est)
if self.reachedFunctionBudget(self.function_budget, self.function_evals):
# if budget is reached return current iterate
return self.function_evals, self.sparsity, self.x, 'B'
if self.function_target is not None:
if self.reachedFunctionTarget(self.function_target, f_est):
# if function target is reached terminate
return self.function_evals, self.sparsity, self.x, 'T'
self.t += 1
return self.function_evals, self.sparsity, False, False