-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcutlass.cu
395 lines (347 loc) · 17.7 KB
/
cutlass.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#include <benchmark/benchmark.h>
#define WMMA
#include <cblas.h>
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <iostream>
#include <numeric>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include "gemm/utils.hpp"
#if CUDA_VERSION < 9000
// CUDA 9.0 introduces a new, light-weight barrier synchronization primitive
// that operates at the warp-scope. This is required to ensure visibility of
// reads/writes among threads that can make indepenent progress on Volta.
// For previous CUDA versions these synchronizations not necessary, and we
// define an empty function as a convenience for backward compatibility.
#ifndef __syncwarp
#define __syncwarp(...)
#endif // __syncwarp
#endif // CUDA_VERSION < 9000
#if 0
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning( \
disable : 4100 4101 4181 4211 4244 4273 4324 4503 4512 4522 4700 4714 4717 4800)
#elif defined __INTEL_COMPILER
#pragma warning push
#pragma warning disable 2196 279 1684 2259
#elif defined __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wall"
#pragma clang diagnostic ignored "-Wextra"
#pragma clang diagnostic ignored "-Wunused"
#pragma clang diagnostic ignored "-Wunused-parameter"
#pragma clang diagnostic ignored "-Wunused-variable"
#elif defined __GNUC__ && __GNUC__ >= 5
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wall"
#pragma GCC diagnostic ignored "-Wextra"
#pragma GCC diagnostic ignored "-Wunused"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
#endif
// Cutlass GEMM API
#include <cutlass/gemm/dispatch.h>
#include <cutlass/gemm/epilogue_function.h>
#include <cutlass/util/util.h>
#ifdef PRINT_IF_ERROR
#undef PRINT_IF_ERROR
#endif // PRINT_IF_ERROR
#include "init/init.hpp"
#include "utils/utils.hpp"
#include "gemm/args.hpp"
#include "gemm/utils.hpp"
template <typename ValueT, typename AccumT,
cutlass::gemm::tiling_strategy::kind_t tiling_strategy>
static cudaError_t cutlass_gemm(int M, int N, int K, AccumT* alpha, ValueT* A, ValueT* B,
AccumT* beta, AccumT* C) {
using namespace cutlass;
using namespace cutlass::gemm;
using value_t = ValueT;
using accum_t = AccumT;
constexpr auto accumulator_alignment = sizeof(accum_t);
constexpr auto operator_alignment = accumulator_alignment;
constexpr auto math_op =
(std::is_same<value_t, half>::value && std::is_same<accum_t, float>::value)
? math_operation_class_t::matrix
: math_operation_class_t::scalar;
constexpr auto TransformA = matrix_transform_t::Transpose;
constexpr auto TransformB = matrix_transform_t::Transpose;
// Define the epilogue functor
using epilogue_op_t = blas_scaled_epilogue<accum_t, accum_t, accum_t>;
const epilogue_op_t epilogue_op(*alpha, *beta);
const auto conf = cutlass::gemm::device_gemm<
tiling_strategy, //< Tile-sizing classification
math_op, //< Indicates which class of math operation to select
TransformA, //< Transformation op for matrix A
operator_alignment, //< Alignment (in bytes) of A operand
TransformB, //< Transformation op for matrix B
operator_alignment, //< Alignment (in bytes) of B operand
value_t, //< Multiplicand value type (matrices A and B)
accum_t, //< Accumulator value type (matrix C and scalars)
epilogue_op_t, //< Epilogue operation to update matrix C
accumulator_alignment //< Alignment (in bytes) of C operand
>(M, N, K, epilogue_op, B, A, C);
return conf.result;
}
template <typename ValueT, typename AccumT,
cutlass::gemm::tiling_strategy::kind_t tiling_strategy>
static void CUTLASS(benchmark::State& state) {
static const std::string IMPLEMENTATION_NAME =
gemm::detail::implementation_name<ValueT, AccumT>();
state.SetLabel(fmt::format("CUTLASS/{}", IMPLEMENTATION_NAME));
if (!has_cuda) {
state.SkipWithError("CUDA/SGEMM no CUDA device found");
return;
}
const AccumT accumOne = gemm::detail::one<AccumT>();
const AccumT accumZero = gemm::detail::zero<AccumT>();
const ValueT valueOne = gemm::detail::one<ValueT>();
const ValueT valueZero = gemm::detail::zero<ValueT>();
const auto M = state.range(0);
const auto N = state.range(1);
const auto K = state.range(2);
AccumT alpha{accumOne};
AccumT beta{accumOne};
auto a = std::vector<ValueT>(M * K);
auto b = std::vector<ValueT>(K * N);
auto c = std::vector<AccumT>(M * N);
std::fill(a.begin(), a.end(), valueOne);
std::fill(b.begin(), b.end(), valueOne);
std::fill(c.begin(), c.end(), accumZero);
using accum_device_type = typename gemm::detail::cuda_type<AccumT>::type;
using value_device_type = typename gemm::detail::cuda_type<ValueT>::type;
value_device_type *d_a{nullptr}, *d_b{nullptr};
accum_device_type* d_c{nullptr};
if (PRINT_IF_ERROR(cudaMalloc((void**) &d_a, a.size() * sizeof(*a.data())))) {
LOG(critical, "CUTLASS/{} device memory allocation failed for matrix A",
IMPLEMENTATION_NAME);
state.SkipWithError(
fmt::format("CUTLASS/{} device memory allocation failed for matrix A",
IMPLEMENTATION_NAME)
.c_str());
return;
}
defer(cudaFree(d_a));
if (PRINT_IF_ERROR(cudaMalloc((void**) &d_b, b.size() * sizeof(*b.data())))) {
LOG(critical, "CUTLASS/{} device memory allocation failed for matrix B",
IMPLEMENTATION_NAME);
state.SkipWithError(
fmt::format("CUTLASS/{} device memory allocation failed for matrix B",
IMPLEMENTATION_NAME)
.c_str());
return;
}
defer(cudaFree(d_b));
if (PRINT_IF_ERROR(cudaMalloc((void**) &d_c, c.size() * sizeof(*c.data())))) {
LOG(critical, "CUTLASS/{} device memory allocation failed for matrix C",
IMPLEMENTATION_NAME);
state.SkipWithError(
fmt::format("CUTLASS/{} device memory allocation failed for matrix C",
IMPLEMENTATION_NAME)
.c_str());
return;
}
defer(cudaFree(d_c));
if (PRINT_IF_ERROR(cublasSetMatrix(M, K, sizeof(*a.data()), a.data(), M, d_a, M))) {
LOG(critical, "CUTLASS/{} setting of A matrix failed", IMPLEMENTATION_NAME);
state.SkipWithError(
fmt::format("CUTLASS/{} setting of A matrix failed", IMPLEMENTATION_NAME)
.c_str());
return;
}
if (PRINT_IF_ERROR(cublasSetMatrix(K, N, sizeof(*b.data()), b.data(), K, d_b, K))) {
LOG(critical, "CUTLASS/{} setting of B matrix failed", IMPLEMENTATION_NAME);
state.SkipWithError(
fmt::format("CUTLASS/{} setting of B matrix failed", IMPLEMENTATION_NAME)
.c_str());
return;
}
if (PRINT_IF_ERROR(cublasSetMatrix(M, N, sizeof(*c.data()), c.data(), M, d_c, M))) {
LOG(critical, "CUTLASS/{} setting of C matrix failed", IMPLEMENTATION_NAME);
state.SkipWithError(
fmt::format("CUTLASS/{} setting of C matrix failed", IMPLEMENTATION_NAME)
.c_str());
return;
}
cudaEvent_t start, stop;
PRINT_IF_ERROR(cudaEventCreate(&start));
PRINT_IF_ERROR(cudaEventCreate(&stop));
for (auto _ : state) {
cudaEventRecord(start, NULL);
const auto cutlass_err =
cutlass_gemm<value_device_type, accum_device_type, tiling_strategy>(
M, N, K, reinterpret_cast<accum_device_type*>(&alpha), d_a, d_b,
reinterpret_cast<accum_device_type*>(&beta), d_c);
cudaEventRecord(stop, NULL);
const auto cuda_err = cudaEventSynchronize(stop);
state.PauseTiming();
if (PRINT_IF_ERROR(cutlass_err)) {
state.SkipWithError(
fmt::format("CUTLASS/{} failed to launch kernel", IMPLEMENTATION_NAME).c_str());
break;
}
if (PRINT_IF_ERROR(cuda_err)) {
state.SkipWithError(
fmt::format("CUTLASS/{} failed to synchronize kernel", IMPLEMENTATION_NAME)
.c_str());
break;
}
float msecTotal = 0.0f;
if (PRINT_IF_ERROR(cudaEventElapsedTime(&msecTotal, start, stop))) {
state.SkipWithError(
fmt::format("CUTLASS/{} failed to get elapsed time", IMPLEMENTATION_NAME)
.c_str());
break;
}
state.SetIterationTime(msecTotal / 1000);
state.ResumeTiming();
}
state.counters.insert(
{{"M", M},
{"N", N},
{"K", K},
{"num_elements", M * N * K},
{"flops",
{state.iterations() * 2.0 * M * N * K, benchmark::Counter::kAvgThreadsRate}}});
state.SetBytesProcessed(int64_t(state.iterations()) * a.size() * b.size() * c.size());
state.SetItemsProcessed(int64_t(state.iterations()) * M * N * K);
}
template <cutlass::gemm::tiling_strategy::kind_t tiling_strategy>
static void CUTLASS_HGEMM(benchmark::State& state) {
return CUTLASS<__half, __half, tiling_strategy>(state);
}
template <cutlass::gemm::tiling_strategy::kind_t tiling_strategy>
static void CUTLASS_WGEMM(benchmark::State& state) {
return CUTLASS<half, float, tiling_strategy>(state);
}
template <cutlass::gemm::tiling_strategy::kind_t tiling_strategy>
static void CUTLASS_SGEMM(benchmark::State& state) {
return CUTLASS<float, float, tiling_strategy>(state);
}
template <cutlass::gemm::tiling_strategy::kind_t tiling_strategy>
static void CUTLASS_DGEMM(benchmark::State& state) {
return CUTLASS<double, double, tiling_strategy>(state);
}
template <cutlass::gemm::tiling_strategy::kind_t tiling_strategy>
static void CUTLASS_I8GEMM(benchmark::State& state) {
return CUTLASS<int8_t, int8_t, tiling_strategy>(state);
}
template <cutlass::gemm::tiling_strategy::kind_t tiling_strategy>
static void CUTLASS_I32GEMM(benchmark::State& state) {
return CUTLASS<int32_t, int32_t, tiling_strategy>(state);
}
// up to 512
#define BENCHMARK_SMALL_TILING(b) \
BENCHMARK_TEMPLATE(b, cutlass::gemm::tiling_strategy::Small) \
->Args({16, 16, 16}) \
->Args({32, 32, 32}) \
->Args({48, 48, 48}) \
->Args({64, 64, 64}) \
->Args({96, 96, 96}) \
->Args({128, 128, 128}) \
->Args({192, 192, 192}) \
->Args({256, 256, 256}) \
->Args({512, 512, 512})
// up to 2048
#define BENCHMARK_MEDIUM_TILING(b) \
BENCHMARK_TEMPLATE(b, cutlass::gemm::tiling_strategy::Medium) \
->Args({768, 768, 768}) \
->Args({1024, 1024, 1024}) \
->Args({1536, 1536, 1536}) \
->Args({2048, 2048, 2048})
// up to 3584
#define BENCHMARK_LARGE_TILING(b) \
BENCHMARK_TEMPLATE(b, cutlass::gemm::tiling_strategy::Large) \
->Args({2560, 2560, 2560}) \
->Args({3072, 3072, 3072}) \
->Args({3584, 3584, 3584})
#define BENCHMARK_HUGE_TILING(b) \
BENCHMARK_TEMPLATE(b, cutlass::gemm::tiling_strategy::Huge) \
->Args({4096, 4096, 4096}) \
->Args({5120, 5120, 5120}) \
->Args({6144, 6144, 6144}) \
->Args({7168, 7168, 7168}) \
->Args({8192, 8192, 8192}) \
->Args({9216, 9216, 9216}) \
->Args({9728, 9728, 9728}) \
->Args({10240, 10240, 10240}) \
->Args({10752, 10752, 10752}) \
->Args({11264, 11264, 11264}) \
->Args({11776, 11776, 11776}) \
->Args({12288, 12288, 12288}) \
->Args({12800, 12800, 12800}) \
->Args({13312, 13312, 13312}) \
->Args({13824, 13824, 13824}) \
->Args({14336, 14336, 14336}) \
->Args({14848, 14848, 14848}) \
->Args({15360, 15360, 15360}) \
->Args({15872, 15872, 15872}) \
->Args({16384, 16384, 16384}) \
->Args({16896, 16896, 16896}) \
->Args({17408, 17408, 17408}) \
->Args({17920, 17920, 17920}) \
->Args({18432, 18432, 18432}) \
->Args({18944, 18944, 18944}) \
->Args({19456, 19456, 19456}) \
->Args({19968, 19968, 19968}) \
->Args({20480, 20480, 20480}) \
->Args({20992, 20992, 20992}) \
->Args({21504, 21504, 21504}) \
->Args({22016, 22016, 22016}) \
->Args({22528, 22528, 22528}) \
->Args({23040, 23040, 23040}) \
->Args({23552, 23552, 23552}) \
->Args({24064, 24064, 24064}) \
->Args({24576, 24576, 24576}) \
->Args({25088, 25088, 25088}) \
->Args({25600, 25600, 25600}) \
->Args({26112, 26112, 26112}) \
->Args({26624, 26624, 26624}) \
->Args({27136, 27136, 27136}) \
->Args({27648, 27648, 27648}) \
->Args({28160, 28160, 28160})
#define BENCHMARK_WIDE_TILING(b) \
BENCHMARK_TEMPLATE(b, cutlass::gemm::tiling_strategy::Wide) \
->Args({128, 169, 1728}) \
->Args({128, 729, 1200}) \
->Args({192, 169, 1728})
#define BENCHMARK_TALL_TILING(b) \
BENCHMARK_TEMPLATE(b, cutlass::gemm::tiling_strategy::Tall) \
->Args({512, 1, 500000}) \
->Args({1024, 1, 500000}) \
->Args({512, 2, 500000}) \
->Args({1024, 2, 500000}) \
->Args({512, 4, 500000}) \
->Args({1024, 4, 500000})
#define BENCHMARK_CUTLASS(b) \
BENCHMARK_SMALL_TILING(b)->UseManualTime(); \
BENCHMARK_MEDIUM_TILING(b)->UseManualTime(); \
BENCHMARK_LARGE_TILING(b)->UseManualTime(); \
BENCHMARK_HUGE_TILING(b)->UseManualTime();
#if 0
BENCHMARK_LARGE_TILING(b)->UseManualTime(); \
BENCHMARK_HUGE_TILING(b)->UseManualTime(); \
BENCHMARK_WIDE_TILING(b)->UseManualTime(); \
BENCHMARK_TALL_TILING(b)->UseManualTime()
#endif
BENCHMARK_CUTLASS(CUTLASS_HGEMM);
BENCHMARK_CUTLASS(CUTLASS_WGEMM);
// BENCHMARK_CUTLASS(CUTLASS_SGEMM);
// BENCHMARK_CUTLASS(CUTLASS_DGEMM);
// BENCHMARK_CUTLASS(CUTLASS_I32GEMM);
// BENCHMARK_CUTLASS(CUTLASS_I8GEMM);
#if 0
#ifdef _MSC_VER
#pragma warning(pop)
#elif defined __INTEL_COMPILER
#pragma warning pop
#elif defined __clang__
#pragma clang diagnostic pop
#elif defined __GNUC__ && __GNUC__ >= 5
#pragma GCC diagnostic pop
#endif
#endif