-
Notifications
You must be signed in to change notification settings - Fork 0
/
summary_time_experiments.py
454 lines (385 loc) · 17 KB
/
summary_time_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
'''Experiment script for summary time
CWT is the Clarkson-Woodruff Transform (CountSketch) and SRHT is is the randomized
hadamard Transform'''
import json
import itertools
import pickle
import helper
import numpy as np
import scipy as sp
from scipy import sparse
from scipy.sparse import load_npz
from timeit import default_timer
from lib import countsketch, srht, gaussian, classical_sketch
from lib import ClassicalSketch
import datasets_config
from joblib import Parallel, delayed
from my_plot_styles import plotting_params
from experiment_parameter_grid import param_grid
import matplotlib.pyplot as plt
random_seed = 400
np.random.seed(random_seed)
sketch_names = ["CountSketch", "SRHT", "Gaussian"]
sketch_functions = {"CountSketch": countsketch.CountSketch,
"SRHT" : srht.SRHT,
"Gaussian" : gaussian.GaussianSketch}
# param_grid = {
# 'num trials' : 5,
# 'rows' : [10000, 25000, 50000, 100000],#, 100000,250000],
# 'columns' : [10,50,100, 500, 1000],#, 100, 500, 1000],
# 'sketch_factors' : 5,
# 'density' : np.linspace(0.1,1.0, num=10)
# }
# # nb. the marker styles are for the plots with multiple sketch settings.
# my_markers = ['.', 's', '^', 'D', 'x', '+', 'V', 'o', '*']
# col_markers = {param_grid['columns'][i]: my_markers[i] for i in range(len(param_grid['columns']))}
# print(col_markers)
# plotting_params = {"CountSketch" : {"colour" : "b",
# "line_style" : '-',
# "marker" : "o" },
# "SRHT" : {"colour" : "k",
# "marker" : "s",
# "line_style" : ':'},
# "Gaussian" : {"colour" : "r",
# "marker" : "v",
# "line_style" : "-."},
# "Classical" : {"colour" : "m",
# "marker" : "*"},
# "Exact" : {"colour" : "mediumspringgreen",
# "marker" : "^"}
# }
def experiment_summary_time_vs_sparsity(n_rows, n_cols, n_trials, sketch_size, densities):
'''
Function to automate the experiments measuring time
and varying sparsity for given input data.
Inputs: n_rows, n_cols, n_trials, sketch_size all int
densities - list of densities to try
Output: Two dictionaries with key as density value tested and
then the times associated with testing that experiment.
One dict for CWT and one for SRHT.
'''
CWT_time = {}
SRHT_time = {}
for density in densities:
A = sparse.random(n_rows,n_cols,density).toarray()
print('Testing density', density)
for trial in range(n_trials):
print("Trial no. ", trial)
CWT_summary_time = 0
SRHT_summary_time = 0
CWT_summary = countsketch.CountSketch(data=A, sketch_dimension=sketch_size)
print("Timing CountSketch")
start = default_timer()
CWT_A = CWT_summary.sketch(A)
CWT_summary_time += default_timer() - start
print("Timing SRHT")
SRHT_summary = srht.SRHT(data=A, sketch_dimension=sketch_size)
start = default_timer()
SRHT_A = SRHT_summary.sketch(A)
SRHT_summary_time = default_timer() - start
CWT_time[density] = CWT_summary_time/n_trials
SRHT_time[density] = SRHT_summary_time/n_trials
return CWT_time, SRHT_time
def full_summary_times_and_plots(row_list, column_list):
'''This is a wrapper to do the above `experiment_summary_time_vs_sparsity`
experiment over the entire parameter grid as defined above'''
results = {
"CountSketch" : {},
"SRHT" : {}
}
for key in results.keys():
results[key] = {}
for n in row_list:
results[key][n] = {}
for d in column_list:
results[key][n][d] = {}
print(results)
for n_rows in row_list:
n_trials = param_grid['num trials']
print('Testing design matrix: {} rows)'.format(n_rows))
exp_result_list = Parallel(n_jobs=-1)(delayed(experiment_summary_time_vs_sparsity)\
(n_rows,cols,n_trials,5*cols,param_grid['density']) for cols in column_list)
print(exp_result_list)
for ii in range(len(column_list)):
dicts = exp_result_list[ii]
count_sketch_dict= dicts[0]
srht_dict = dicts[1]
results["CountSketch"][n_rows][column_list[ii]] = count_sketch_dict
results["SRHT"][n_rows][column_list[ii]] = srht_dict
print(results)
np.save('figures/summary_time_vs_sparsity.npy', results)
print(json.dumps(results,indent=4))
for n in param_grid['rows']:
fig, ax = plt.subplots(dpi=250)
for sketch,d in itertools.product(results.keys(), param_grid['columns']):
print(n,sketch,d)
my_colour = plotting_params[sketch]["colour"]
my_label = sketch + str(d)
my_line = plotting_params[sketch]["line_style"]
# this just pulls the index of d in the param list and uses that as
# the marker inded
my_marker = my_markers[param_grid['columns'].index(d)]
ax.plot(param_grid['density'], results[sketch][n][d].values(),
color=my_colour, linestyle=my_line, linewidth=2.0,
marker=my_marker, markersize=8.0,label=my_label)
ax.legend(title='n = {}'.format(n),loc=1)
ax.set_yscale('log')
ax.set_ylabel('log(seconds)')
ax.set_xlabel('Density')
save_name = "figures/summary_time_density_"+str(n)+".pdf"
fig.savefig(save_name, bbox_inches="tight")
plt.show()
return results
def experiment_summary_distortion_vs_aspect_ratio(n_rows, n_trials, sketch_size=1.5,density=0.3):
'''Experiment to see how distortion varies for a fixed sketch size over
different aspect ratios.'''
max_num_cols = np.int(n_rows/2)
#cols = np.concatenate((np.asarray([10,100,250,500],dtype=np.int),np.linspace(1000,
# max_num_cols,max_num_cols/1000,dtype=np.int)))
cols = [10,50,75,100,250,500,750,1000,1500,2000,2500, 5000]
print(cols)
# output dicts
distortions = {sketch : {} for sketch in sketch_functions.keys()}
print("Entering loop")
for d in cols:
A = sparse.random(n_rows,d,density).toarray()#np.random.randn(n_rows,d)
x = np.random.randn(d)
x = x/np.linalg.norm(x)
true_norm = np.linalg.norm(A@x,ord=2)**2
my_sketch_size = np.int(sketch_size*d)
if my_sketch_size >= n_rows:
continue
print(my_sketch_size)
for sketch in sketch_functions.keys():
#if sketch is "Gaussian":
# continue
approx_factor = 0
for trial in range(n_trials):
print("Sketch: {}, testing {} cols with {} sketch_size, trial: {}".format(sketch, d,my_sketch_size, trial))
summary = sketch_functions[sketch](data=A, sketch_dimension=my_sketch_size)
S_A = summary.sketch(A)
approx_norm = np.linalg.norm(S_A@x,ord=2)**2
print("Approx ratio: {}".format(true_norm/approx_norm))
print("Update val:{}".format(np.abs(approx_norm-true_norm) / true_norm))
approx_factor += np.abs(approx_norm-true_norm)/true_norm
distortions[sketch][d] = approx_factor/n_trials
print(distortions)
return distortions
def experiment_summary_time_distortion_real_data():
# dataset = 'YearPredictionMSD'
# data_path = 'data/'+ dataset + '.npy'
datasets = datasets_config.datasets
sketch_factors = [1.5,2,5]
# Results dict
results = {}
for data in datasets:
if data is "kdd":
continue
if data is "rucci":
continue
if data is "rail2586":
continue
n_trials = datasets[data]["repeats"]
print("-"*80)
print("TESTING DATA {} WITH {} REPEATS".format(data, n_trials))
#input_file = datasets[data]["filepath"]
input_file = datasets[data]["filepath"]
print(input_file)
sparse_flag = False # a check to say if sparse data is found.
# Defaults to False unles the sparse matrix can be read in.
try:
sparse_file = datasets[data]['filepath_sparse']
sparse_flag = True
except KeyError:
print("No sparse representation")
print(sparse_flag)
if sparse_flag:
print("Read in sparse format for {} as well as dense".format(data))
sparse_data = load_npz(sparse_file)
sX = sparse_data
print(type(sparse_data))
dense_data = np.load(input_file)
#X_row, X_col, X_data = sparse_data.row, sparse_data.col, sparse_data.data
else:
dense_data = np.load(input_file)
X = dense_data[:,:]
n,d = X.shape
print("Dense shape of {}: {}".format(data, X.shape))
#print("Sparse shape of {}: {}".format(data, sX.shape))
# # Read in the file
# #subset_size = 10000
# if data is "rail2586":
# rawdata = load_npz(input_file)
# print("Sparse type: {} so getting row/col/data triples".format(type(rawdata)))
# X = rawdata
# X_row, X_col, X_data = X.row, X.col, X.data
# else:
# rawdata = np.load(input_file)
# if data is "california_housing_train":
# test_data = np.load("data/california_housing_test.npy")
# rawdata = np.concatenate((rawdata,test_data),axis=0)
# X = rawdata[:, 1:]
# y = rawdata[:,-1] # nb for the rail 2586 there is not a target label
#
#
# # if type(rawdata) == 'scipy.sparse.coo.coo_matrix':
# # X = rawdata
# # else:
#
#
# print("Shape of X: {}".format(X.shape))
# #print("Shape of y: {}".format(y.shape))
#
# output dict structure
results[data] = {"Exact Time" : 0}
for sketch in ["CountSketch", "SRHT"]:
results[data][sketch] = {}
for factor in sketch_factors:
results[data][sketch][factor] = {"sketch time" : 0,
"product time" : 0,
"total time" : 0,
"error" : 0}
# True values
print("-"*80)
print("ENTERING EXPERIMENT LOOP FOR TRUE VALUES")
cov_time_total = 0
for _ in range(n_trials):
print("iteration ", _)
cov_time_start = default_timer()
covariance_matrix = X.T@X
cov_time_total += default_timer() - cov_time_start
cov_time_mean = cov_time_total/n_trials
print("Exact time for {}: {}".format(data,cov_time_mean))
results[data]["Exact Time"] = cov_time_mean
covariance_matrix_norm = np.linalg.norm(covariance_matrix, ord='fro')**2
#
# if sp.sparse.issparse(X):
# covariance_matrix_norm = sp.sparse.linalg.norm(covariance_matrix, ord='fro')**2
# else:
# covariance_matrix_norm = np.linalg.norm(covariance_matrix, ord='fro')**2
#
#
#
print("-"*80)
print("ENTERING EXPERIMENT LOOP FOR SKETCH")
#
#
#
#
#
for sketch_method in ["CountSketch", "SRHT"]:
if (sketch_method is "SRHT") and X.shape[1]>500:
# #X = np.asarray(X.todense())
# #X = X[:subset_size,:]
# #print("Changed type")
# #print("In future will need to continue here as too large.")
# print(sketch_method)
# print(type(X))
print("CONTINUING AS DATA TOO LARGE FOR SRHT")
continue
#
for factor in sketch_factors:
# Measurable variables
summary_time = 0
approx_hessian_time = 0
distortion = 0
print("TESTING {} with sketch size {}*d".format(sketch_method, factor))
for _ in range(n_trials):
print("iteration ", _)
sketch_size = np.int(np.ceil(factor*d))
#summary = countsketch.CountSketch(data=X,sketch_dimension=sketch_sizes[0])
if sparse_flag is True and sketch_method is "CountSketch":
summary = sketch_functions[sketch_method](data=sX,sketch_dimension=sketch_size)
else:
summary = sketch_functions[sketch_method](data=X,sketch_dimension=sketch_size)
start = default_timer()
S_A = summary.sketch(data=X)
summary_time += default_timer() - start
hessian_start = default_timer()
approx_hessian = S_A.T@S_A
approx_hessian_time += default_timer() - hessian_start
distortion += np.linalg.norm(approx_hessian - covariance_matrix,
ord='fro')**2/covariance_matrix_norm
mean_total_time = (approx_hessian_time + summary_time)/n_trials
mean_distortion = distortion / n_trials
print("Mean total time {}".format(mean_total_time))
print("Mean distortion: {}".format(mean_distortion))
results[data][sketch_method][factor]["sketch time"] = summary_time/n_trials
results[data][sketch_method][factor]["product time"] = approx_hessian_time/n_trials
results[data][sketch_method][factor]["total time"] = mean_total_time
results[data][sketch_method][factor]["error"] = mean_distortion
np.save("figures/real_data_summary_time.npy", results)
with open('figures/real_data_summary_time.json', 'w') as outfile:
json.dump(results, outfile)
return results
### Plotting functions:
def plotting_summary_time_vs_sparsity(exp_results):
fig, ax = plt.subplots(dpi=250, facecolor='w', edgecolor='k')
#fig.suptitle("Sketch time vs Data density")
for parameters in exp_results.keys():
print(parameters)
n = int(parameters[0])
d = int(parameters[1])
method = parameters[2]
# Maintain consistency with other plots
# if method == 'CountSketch':
# col = "b"
# line_style = '-'
# else:
# col = "k"
# line_style = ':'
my_colour = plotting_params[method]["colour"]
my_line_style = plotting_params[method]["line_style"]
my_label = method + str(d)
ax.plot(*zip(*sorted(exp_results[parameters].items())),
color=my_colour, marker=col_markers[d],linestyle=line_style,
label=my_label)
ax.set_yscale('log')
ax.set_xlabel("Density")
ax.set_ylabel("Time (seconds)")
ax.legend()
#ax.grid()
#lgd = ax.legend(handles, labels, bbox_to_anchor=(1.0, 1.0))
# fig.savefig('sparsity-time-1e5.pdf', #bbox_extra_artists=(lgd,),
# bbox_inches='tight',orientation='landscape')
plt.show()
def plotting_distortion(distortion_results,n_rows=None,sketch_size=None):
#pass
fig, ax = plt.subplots(dpi=250, facecolor='w', edgecolor='k')
for name in distortion_results.keys():
sketch_method = name
print(sketch_method)
cols = distortion_results[sketch_method].keys()
distortions = distortion_results[sketch_method].values()
ax.plot(cols, distortions,
color=plotting_params[sketch_method]["colour"],
marker=plotting_params[sketch_method]["marker"],
linestyle=plotting_params[sketch_method]["line_style"],
label=sketch_method)
ax.set_ylabel("Distortion")
ax.set_xlabel("Number of columns")
ax.set_yscale("log")
if sketch_size is None or n_rows is None:
ax.legend()
else:
ax.legend(title='(n,m) = ({},{}d)'.format(n_rows,sketch_size))
fig.tight_layout()
fig.savefig("figures/distortion_vs_cols.pdf", bbox_inches="tight")
plt.show()
def main():
######### Script setup parameters ############
# NB. Read from file in future
# summary_time_start = default_timer()
# full_summary_times_and_plots(param_grid['rows'], param_grid['columns'])
# summary_time_end = default_timer() - summary_time_start
# print("Script time: ", summary_time_end)
### COMPLETED EXPERIMENTS
# distortions_to_plot = experiment_summary_distortion_vs_aspect_ratio(25000,param_grid['num trials'])
# np.save("figures/distortion_vs_cols.npy", distortions_to_plot)
# plotting_distortion(distortions_to_plot,25000,param_grid['num trials'])
real_data_summary_time = experiment_summary_time_distortion_real_data()
np.save("figures/real_data_summary_time.npy", real_data_summary_time)
print(json.dumps(real_data_summary_time,indent=4))
pass
if __name__ == "__main__":
main()