-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrun_particlesfm.py
executable file
·174 lines (147 loc) · 9.17 KB
/
run_particlesfm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# ParticleSfM
# Copyright (C) 2022 ByteDance Inc.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""Run the whole pipeline of trajectory-based video sfm from images
images -> optical flow -> point trajectories -> motion seg -> global mapper
"""
import os
import argparse
import shutil
import pdb
def connect_point_trajectory(args, image_dir, output_dir, skip_exists=False, keep_intermediate=False):
# set directories in the workspace
flow_dir = os.path.join(output_dir, "optical_flows")
traj_dir = os.path.join(output_dir, "trajectories")
# optical flow (RAFT)
from third_party.RAFT import compute_raft_custom_folder, compute_raft_custom_folder_stride2
print("[ParticleSFM] Running pairwise optical flow inference......")
compute_raft_custom_folder(image_dir, flow_dir, skip_exists=skip_exists)
if not args.skip_path_consistency:
print("[ParticleSfM] Running pairwise optical flow inference (stride 2)......")
compute_raft_custom_folder_stride2(image_dir, flow_dir, skip_exists=skip_exists)
# point trajectory (saved in workspace_dir / point_trajectories)
from point_trajectory import main_connect_point_trajectories
print("[ParticleSfM] Connecting (optimization {0}) point trajectories from optical flows.......".format("disabled" if args.skip_path_consistency else "enabled"))
main_connect_point_trajectories(flow_dir, traj_dir, sample_ratio=args.sample_ratio, flow_check_thres=args.flow_check_thres, skip_path_consistency=args.skip_path_consistency, skip_exists=skip_exists)
if not keep_intermediate:
# remove optical flows
shutil.rmtree(os.path.join(output_dir, "optical_flows"))
return traj_dir
def motion_segmentation(args, image_dir, output_dir, traj_dir, skip_exists=False, keep_intermediate=False):
# set directories in the workspace
depth_dir = os.path.join(output_dir, "midas_depth")
labeled_traj_dir = traj_dir + "_labeled"
# monocular depth (MiDaS)
print("[ParticleSfM] Running per-frame monocular depth estimation........")
from third_party.MiDaS import run_midas
os.environ["MKL_THREADING_LAYER"] = "GNU"
run_midas(image_dir, depth_dir, skip_exists=skip_exists)
# point trajectory based motion segmentation
print("[ParticleSfM] Running point trajectory based motion segmentation........")
from motion_seg import main_motion_segmentation
main_motion_segmentation(image_dir, depth_dir, traj_dir, labeled_traj_dir, window_size=args.window_size, traj_max_num=args.traj_max_num, skip_exists=skip_exists)
if os.path.isfile(os.path.join(output_dir, "motion_seg.mp4")):
os.remove(os.path.join(output_dir, "motion_seg.mp4"))
shutil.move(os.path.join(labeled_traj_dir, "motion_seg.mp4"), output_dir)
if not keep_intermediate:
# remove original point trajectories
shutil.rmtree(depth_dir)
shutil.rmtree(traj_dir)
return labeled_traj_dir
def sfm_reconstruction(args, image_dir, output_dir, traj_dir, skip_exists=False, keep_intermediate=False):
# set directories in the workspace
sfm_dir = os.path.join(output_dir, "sfm")
# sfm reconstruction
from sfm import main_global_sfm, main_incremental_sfm, write_depth_pose_from_colmap_format
if not args.incremental_sfm:
print("[ParticleSfM] Running global structure-from-motion........")
main_global_sfm(sfm_dir, image_dir, traj_dir, remove_dynamic=(not args.assume_static), skip_exists=skip_exists)
else:
print("[ParticleSfM] Running incremental structure-from-motion with COLMAP........")
main_incremental_sfm(sfm_dir, image_dir, traj_dir, remove_dynamic=(not args.assume_static), skip_exists=skip_exists)
# # write depth and pose files from COLMAP format
write_depth_pose_from_colmap_format(sfm_dir, os.path.join(output_dir, "colmap_outputs_converted"))
if not keep_intermediate:
# remove labeled point trajectories
shutil.rmtree(traj_dir)
def particlesfm(args, image_dir, output_dir, skip_exists=False, keep_intermediate=False):
"""
Inputs:
- img_dir: str - The folder containing input images
- output_dir: str - The workspace directory
"""
if not os.path.exists(image_dir):
raise ValueError("Error! The input image directory {0} is not found.".format(image_dir))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# connect point trajectory
traj_dir = connect_point_trajectory(args, image_dir, output_dir, skip_exists=skip_exists, keep_intermediate=keep_intermediate)
# motion segmentation
if not args.assume_static:
traj_dir = motion_segmentation(args, image_dir, output_dir, traj_dir, skip_exists=skip_exists, keep_intermediate=keep_intermediate)
# sfm reconstruction
if not args.skip_sfm:
sfm_reconstruction(args, image_dir, output_dir, traj_dir, skip_exists=skip_exists, keep_intermediate=keep_intermediate)
def parse_args():
parser = argparse.ArgumentParser("Dense point trajectory based colmap reconstruction for videos")
# point trajectory
parser.add_argument("--flow_check_thres", type=float, default=1.0, help='the forward-backward flow consistency check threshold')
parser.add_argument("--sample_ratio", type=int, default=2, help='the sampling ratio for point trajectories')
parser.add_argument("--traj_min_len", type=int, default=3, help='the minimum length for point trajectories')
# motion segmentation
parser.add_argument("--window_size", type=int, default=10, help='the window size for trajectory motion segmentation')
parser.add_argument("--traj_max_num", type=int, default=100000, help='the maximum number of trajs inside a window')
# sfm
parser.add_argument("--incremental_sfm", action='store_true', help='whether to use incremental sfm or not')
# pipeline control
parser.add_argument("--skip_path_consistency", action='store_true', help='whether to skip the path consistency optimization or not')
parser.add_argument("--assume_static", action='store_true', help='whether to skip the motion segmentation or not')
parser.add_argument("--skip_sfm", action='store_true', help='whether to skip structure-from-motion or not')
parser.add_argument("--skip_exists", action='store_true', help='whether to skip exists')
parser.add_argument("--keep_intermediate", action='store_true', help='whether to keep intermediate files such as flows, monocular depths, etc.')
# input by sequence directory
# python run_particlesfm.py --image_dir ${PATH_TO_SEQ_FOLDER} --output_dir ${OUTPUT_WORKSPACE}
parser.add_argument("-i", "--image_dir", type=str, default="none", help="path to the sequence folder containing images")
parser.add_argument("-o", "--output_dir", type=str, default="none", help="workspace for output")
# input by workspace
# python run_particlesfm.py --workspace_dir ${WORKSPACE_DIR}
parser.add_argument("--workspace_dir", type=str, default="none", help="input workspace")
parser.add_argument("--image_folder", type=str, default="images", help="image folder") # also used in the folder option
# input by folder containing multiple workspaces
# python run_particlesfm.py --root_dir ${ROOT_DIR}
# multiple sequences should be with the structure below:
# - ROOT_DIR
# - XXX (sequence 1)
# - images
# - xxxxxx.png
# - XXX (sequence 2)
parser.add_argument("--root_dir", type=str, default="none", help='path to to the folder containing workspaces')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
if args.image_dir != "none" and args.output_dir != "none": # input by sequence directory
particlesfm(args, args.image_dir, args.output_dir, skip_exists=args.skip_exists, keep_intermediate=args.keep_intermediate)
elif args.workspace_dir != "none":
image_dir = os.path.join(args.workspace_dir, args.image_folder)
particlesfm(args, image_dir, args.workspace_dir, skip_exists=args.skip_exists, keep_intermediate=args.keep_intermediate)
elif args.root_dir != "none":
if not os.path.exists(args.root_dir):
raise ValueError("Error! The input folder {0} is not found.".format(args.root_dir))
seq_names = sorted(os.listdir(args.root_dir))
print("A total of {0} sequences found in {1}.".format(len(seq_names), args.root_dir))
for seq_name in seq_names:
workspace_dir = os.path.join(args.root_dir, seq_name)
image_dir = os.path.join(workspace_dir, args.image_folder)
particlesfm(args, image_dir, workspace_dir, skip_exists=args.skip_exists, keep_intermediate=args.keep_intermediate)
else:
raise ValueError("Error! No input provided.")