-
Notifications
You must be signed in to change notification settings - Fork 6
/
setup.py
287 lines (232 loc) · 9.27 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import print_function
from future.utils import iteritems
from builtins import next
from builtins import filter
import os
from os.path import join as pjoin
from glob import glob
from ast import parse
from setuptools import setup
from distutils.extension import Extension
from distutils.command.clean import clean
from Cython.Distutils import build_ext
import subprocess
import re
import numpy
# The approach used in this file is copied from the cython/CUDA setup.py
# example at https://github.com/rmcgibbo/npcuda-example
def find_in_path(name, path):
"Find a file in a search path"
# Adapted fom http://code.activestate.com/recipes/52224
for dir in path.split(os.pathsep):
binpath = pjoin(dir, name)
if os.path.exists(binpath):
return os.path.abspath(binpath)
return None
def locate_cuda():
"""Locate the CUDA environment on the system
Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64'
and values giving the absolute path to each directory.
Starts by looking for the CUDAHOME env variable. If not found,
everything is based on finding 'nvcc' in the PATH.
"""
# first check if the CUDAHOME env variable is in use
if 'CUDAHOME' in os.environ:
home = os.environ['CUDAHOME']
nvcc = pjoin(home, 'bin', 'nvcc')
else:
# otherwise, search the PATH for NVCC
nvcc = find_in_path('nvcc', os.environ['PATH'])
if nvcc is None:
raise EnvironmentError('The nvcc binary could not be '
'located in your $PATH. Either add it to your path, '
'or set $CUDAHOME')
home = os.path.dirname(os.path.dirname(nvcc))
cudaconfig = {'home': home, 'nvcc': nvcc,
'include': pjoin(home, 'include'),
'lib64': pjoin(home, 'lib64')}
for k, v in iteritems(cudaconfig):
if not os.path.exists(v):
raise EnvironmentError('The CUDA %s path could not be '
'located in %s' % (k, v))
return cudaconfig
def get_cuda_version(cucnf):
"""Get the installed CUDA version from nvcc"""
try:
nvcc = cucnf['nvcc']
verstr = subprocess.check_output([nvcc, '-V']).decode("utf-8")
m = re.search('release (\d+\.\d+)', verstr)
ver = m.group(1)
except:
ver = None
return ver
def customize_compiler_for_nvcc(self):
"""Inject deep into distutils to customize how the dispatch
to gcc/nvcc works.
If you subclass UnixCCompiler, it's not trivial to get your subclass
injected in, and still have the right customizations (i.e.
distutils.sysconfig.customize_compiler) run on it. So instead of going
the OO route, I have this. Note, it's kindof like a wierd functional
subclassing going on.
"""
# tell the compiler it can processes .cu
self.src_extensions.append('.cu')
# save references to the default compiler_so and _comple methods
default_compiler_so = self.compiler_so
super = self._compile
# now redefine the _compile method. This gets executed for each
# object but distutils doesn't have the ability to change compilers
# based on source extension: we add it.
def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts):
if os.path.splitext(src)[1] == '.cu':
# use the cuda for .cu files
self.set_executable('compiler_so', CUDA['nvcc'])
# use only a subset of the extra_postargs, which are 1-1 translated
# from the extra_compile_args in the Extension class
postargs = extra_postargs['nvcc']
else:
postargs = extra_postargs['gcc']
super(obj, src, ext, cc_args, postargs, pp_opts)
# reset the default compiler_so, which we might have changed for cuda
self.compiler_so = default_compiler_so
# inject our redefined _compile method into the class
self._compile = _compile
# Run the customize_compiler
class custom_build_ext(build_ext):
def build_extensions(self):
customize_compiler_for_nvcc(self.compiler)
build_ext.build_extensions(self)
class custom_clean(clean):
def run(self):
super(custom_clean, self).run()
for f in glob(os.path.join('sporco_cuda', '*.pyx')):
os.unlink(os.path.splitext(f)[0] + '.c')
for f in glob(os.path.join('sporco_cuda', '*.so')):
os.unlink(f)
# Obtain the numpy include directory. This logic works across numpy versions.
try:
numpy_include = numpy.get_include()
except AttributeError:
numpy_include = numpy.get_numpy_include()
CUDA = locate_cuda()
cuver = get_cuda_version(CUDA)
# Default CUDA version if version number cannot be extracted from nvcc
if cuver is None:
cuver = '10.0'
cc = [
'-gencode', 'arch=compute_30,code=sm_30',
'-gencode', 'arch=compute_32,code=sm_32',
'-gencode', 'arch=compute_35,code=sm_35',
'-gencode', 'arch=compute_37,code=sm_37',
'-gencode', 'arch=compute_50,code=sm_50',
'-gencode', 'arch=compute_52,code=sm_52',
'-gencode', 'arch=compute_53,code=sm_53',
'-gencode', 'arch=compute_60,code=sm_60',
'-gencode', 'arch=compute_61,code=sm_61',
'-gencode', 'arch=compute_62,code=sm_62',
'-gencode', 'arch=compute_70,code=sm_70',
'-gencode', 'arch=compute_72,code=sm_72',
'-gencode', 'arch=compute_75,code=sm_75',
'-gencode', 'arch=compute_80,code=sm_80',
'-gencode', 'arch=compute_86,code=sm_86'
]
if cuver == '8.0':
archflg = cc[0:20]
elif cuver == '9.0' or cuver == '9.1' or cuver == '9.2':
archflg = cc[0:24]
elif cuver == '10.0' or cuver == '10.1' or cuver == '10.2':
archflg = cc[0:26]
elif cuver == '11.0':
archflg = cc[4:28]
elif cuver == '11.1' or cuver == '11.2' or cuver == '11.3' or cuver == '11.4':
archflg = cc[4:30]
else:
archflg = cc[8:30]
gcc_flags = ['-shared', '-O2', '-fno-strict-aliasing']
nvcc_flags = [
'-Xcompiler', "'-D__builtin_stdarg_start=__builtin_va_start'",
'--compiler-options', "'-fno-inline'",
'--compiler-options', "'-fno-strict-aliasing'",
'--compiler-options', "'-Wall'"
] + archflg + [
'-Xcompiler', "'-fPIC'"
]
ext_util = Extension('sporco_cuda.util',
sources= ['sporco_cuda/src/utils.cu',
'sporco_cuda/util.pyx'],
library_dirs = [CUDA['lib64']],
libraries = ['cuda', 'cudart'],
language = 'c',
runtime_library_dirs = [CUDA['lib64']],
extra_compile_args = {
'gcc': gcc_flags,
'nvcc': nvcc_flags
},
include_dirs = [numpy_include, CUDA['include'], 'sporco_cuda/src'])
ext_cbpdn = Extension('sporco_cuda.cbpdn',
sources= ['sporco_cuda/src/utils.cu',
'sporco_cuda/src/cbpdn_kernels.cu',
'sporco_cuda/src/cbpdn.cu',
'sporco_cuda/src/cbpdn_grd.cu',
'sporco_cuda/cbpdn.pyx'],
library_dirs = [CUDA['lib64']],
libraries = ['cuda', 'cudart', 'cufft', 'cublas', 'm'],
language = 'c',
runtime_library_dirs = [CUDA['lib64']],
extra_compile_args = {
'gcc': gcc_flags,
'nvcc': nvcc_flags
},
include_dirs = [numpy_include, CUDA['include'], 'sporco_cuda/src'])
name = 'sporco-cuda'
pname = 'sporco_cuda'
# Get version number from sporco_cuda/__init__.py
# See http://stackoverflow.com/questions/2058802
with open(os.path.join(pname, '__init__.py')) as f:
version = parse(next(filter(
lambda line: line.startswith('__version__'),
f))).body[0].value.s
longdesc = \
"""
SPORCO-CUDA is an extension package to Sparse Optimisation Research
Code (SPORCO), providing GPU accelerated versions for some
convolutional sparse coding problems.
"""
setup(
author = 'Gustavo Silva, Brendt Wohlberg',
author_email = 'gustavo.silva@pucp.edu.pe, brendt@ieee.org',
name = name,
description = 'SPORCO-CUDA: A CUDA extension package for SPORCO',
long_description = longdesc,
keywords = ['Convolutional Sparse Representations',
'Convolutional Sparse Coding', 'CUDA'],
url = 'https://github.com/bwohlberg/sporco-cuda',
version = version,
platforms = 'Linux',
license = 'BSD',
setup_requires = ['cython', 'future', 'numpy'],
#tests_require = ['pytest', 'pytest-runner', 'sporco'],
tests_require = ['pytest', 'pytest-runner'],
install_requires = ['future', 'numpy'],
classifiers = [
'License :: OSI Approved :: BSD License',
'Development Status :: 4 - Beta',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: BSD License',
'Operating System :: POSIX :: Linux',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering :: Information Analysis',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Software Development :: Libraries :: Python Modules'
],
# extension module specification
ext_modules = [ext_util, ext_cbpdn],
# inject our custom trigger
cmdclass = {'build_ext': custom_build_ext,
'clean': custom_clean},
# since the package has c code, the egg cannot be zipped
zip_safe = False)