forked from philawhite/spGDMM-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
410 lines (346 loc) · 14.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import numpy as np
from scipy.stats import invgamma
import pymc as pm
# expcov function to calculate the exponential covariance matrix
def expcov(dists, rho, sigma):
"""
Calculate the exponential covariance matrix based on distance between points.
Key properties:
- Positive definite
- Stationarity: i.e. Covariance depends ONLY on distance between and not absolute locations.
- Smoothness i.e. continuous
- Correlation decay i.e. correlation decays as a function of distance between points
Parameters:
dists (ndarray):
rho (float): The range parameter. Determines the rate at which covariance decreases as the distance increases.
sigma (float): The standard deviation. Represents the scale of the covariance.
Returns:
ndarray: The exponential covariance matrix.
"""
n = dists.shape[0]
result = np.zeros((n, n))
sigma2 = sigma ** 2
# Calculate the covariance between each pair of points
for i in range(n-1):
for j in range(i+1, n):
temp = sigma2 * np.exp(-dists[i, j] / rho)
result[i, j] = temp
result[j, i] = temp
# Set the diagonal elements to sigma^2
for i in range(n):
result[i, i] = sigma2
return result
def model_1_pymc(X, p, n, c, log_V, censored):
"""
Implement the first model using PyMC. Provided parameters are for a specific site-pair.
V ~ N(mu, sigma^2)
mu = beta_0 + beta * h(||s[i] - s[j]||) + sum of the covariate distances
Spatial Random Effects - None
Variance - sigma^2
Parameters:
X (ndarray): The feature matrix.
p (int): The number of features.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
Returns:
trace: The trace of the sampled posterior.
"""
with pm.Model() as model:
# Define the priors
beta_0 = pm.Normal('beta_0', mu=0, sigma=10)
beta = pm.Lognormal('beta', mu=0, sigma=10, shape=p)
# Calculate the linear predictor
linpred = pm.math.dot(X[:, :p], beta
# Define the likelihood
sigma2 = pm.InverseGamma('sigma2', alpha=1, beta=1)
mu = beta_0 + linpred
log_V_obs = pm.Normal('log_V_obs', mu=mu, sigma=pm.math.sqrt(sigma2), observed=log_V)
# Sample from the posterior
trace = pm.sample(1000, return_inferencedata=True, progressbar=True)
return trace
def model_1(X, p, n, c, log_V, censored):
"""
Implement the first model. Provided parameters are for a specific site-pair.
V ~ N(mu, sigma^2)
mu = beta_0 + beta * h(||s[i] - s[j]||) + sum of the covariate distances
Spatial Random Effects - None
Variance - sigma^2
Parameters:
X (ndarray): The feature matrix.
p (int): The number of features.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
Returns:
None
"""
# Define the priors
beta_0 = np.random.normal(0, 10)
beta = np.exp(np.random.normal(0, 10, size=p))
# Calculate the linear predictor
linpred = np.dot(X[:, :p], beta)
# Sample the error variance
sigma2 = invgamma.rvs(1, 1)
# Loop through the observations and sample the response and censored values
for i in range(n):
mu = beta_0 + linpred[i]
log_V[i] = np.random.normal(mu, np.sqrt(sigma2))
censored[i] = np.random.uniform(log_V[i], c[i])
# nimble_code2 function
def nimble_code2(X, p, p_sigma, n, c, log_V, censored, X_sigma):
"""
Implement the second NIMBLE code block.
Parameters:
X (ndarray): The feature matrix.
p (int): The number of features.
p_sigma (int): The number of features for the variance model.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
X_sigma (ndarray): The feature matrix for the variance model.
Returns:
None
"""
# Define the priors
beta_0 = np.random.normal(0, 10)
beta = np.exp(np.random.normal(0, 10, size=p))
beta_sigma = np.random.normal(0, 10, size=p_sigma)
# Calculate the linear predictor and the variance
linpred = np.dot(X[:, :p], beta)
var_out = np.exp(np.dot(X_sigma[:, :p_sigma], beta_sigma))
# Loop through the observations and sample the response and censored values
for i in range(n):
mu = beta_0 + linpred[i]
log_V[i] = np.random.normal(mu, np.sqrt(var_out[i]))
censored[i] = np.random.uniform(log_V[i], c[i])
# nimble_code3 function
def nimble_code3(x, p, p_sigma, n, c, log_V, censored):
"""
Implement the third NIMBLE code block.
Parameters:
x (ndarray): The feature matrix.
p (int): The number of features.
p_sigma (int): The number of features for the variance model.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
Returns:
None
"""
# Define the priors
beta_0 = np.random.normal(0, 10)
beta = np.exp(np.random.normal(0, 10, size=p))
beta_sigma = np.random.normal(0, 10, size=p_sigma)
# Calculate the linear predictor
linpred = np.dot(x[:, :p], beta)
# Loop through the observations and sample the response and censored values
for i in range(n):
mu = beta_0 + linpred[i]
var_out = np.exp(beta_sigma[0] + mu * beta_sigma[1] + mu ** 2 * beta_sigma[2] + mu ** 3 * beta_sigma[3])
log_V[i] = np.random.normal(mu, np.sqrt(var_out))
censored[i] = np.random.uniform(log_V[i], c[i])
# nimble_code4 function
def nimble_code4(x, p, n, c, log_V, censored, row_ind, col_ind, R_inv, n_loc):
"""
Implement the fourth NIMBLE code block.
Parameters:
x (ndarray): The feature matrix.
p (int): The number of features.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
row_ind (ndarray): The row indices for the spatial random effects.
col_ind (ndarray): The column indices for the spatial random effects.
R_inv (ndarray): The inverse of the spatial correlation matrix.
n_loc (int): The number of spatial locations.
Returns:
None
"""
# Define the priors
beta_0 = np.random.normal(0, 10)
sig2_psi = invgamma.rvs(1, 1)
prec_use = R_inv / sig2_psi
psi = np.random.multivariate_normal(np.zeros(n_loc), prec_use)
beta = np.exp(np.random.normal(0, 10, size=p))
sigma2 = invgamma.rvs(1, 1)
# Calculate the linear predictor
linpred = np.dot(x[:, :p], beta)
# Loop through the observations and sample the response and censored values
for i in range(n):
mu = beta_0 + linpred[i] + np.abs(psi[row_ind[i]] - psi[col_ind[i]])
log_V[i] = np.random.normal(mu, np.sqrt(sigma2))
censored[i] = np.random.uniform(log_V[i], c[i])
# nimble_code5 function
def nimble_code5(x, p, p_sigma, n, c, log_V, censored, row_ind, col_ind, R_inv, n_loc):
"""
Implement the fifth NIMBLE code block.
Parameters:
x (ndarray): The feature matrix.
p (int): The number of features.
p_sigma (int): The number of features for the variance model.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
row_ind (ndarray): The row indices for the spatial random effects.
col_ind (ndarray): The column indices for the spatial random effects.
R_inv (ndarray): The inverse of the spatial correlation matrix.
n_loc (int): The number of spatial locations.
Returns:
None
"""
# Define the priors
beta_0 = np.random.normal(0, 10)
sig2_psi = invgamma.rvs(1, 1)
prec_use = R_inv / sig2_psi
psi = np.random.multivariate_normal(np.zeros(n_loc), prec_use)
beta = np.exp(np.random.normal(0, 10, size=p))
beta_sigma = np.random.normal(0, 10, size=p_sigma)
# Calculate the linear predictor and the variance
linpred = np.dot(x[:, :p], beta)
var_out = np.exp(np.dot(X_sigma[:, :p_sigma], beta_sigma))
# Loop through the observations and sample the response and censored values
for i in range(n):
mu = beta_0 + linpred[i] + np.abs(psi[row_ind[i]] - psi[col_ind[i]])
log_V[i] = np.random.normal(mu, np.sqrt(var_out[i]))
censored[i] = np.random.uniform(log_V[i], c[i])
# nimble_code6 function
def nimble_code6(x, p, p_sigma, n, c, log_V, censored, row_ind, col_ind, R_inv, n_loc):
"""
Implement the sixth NIMBLE code block.
Parameters:
x (ndarray): The feature matrix.
p (int): The number of features.
p_sigma (int): The number of features for the variance model.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
row_ind (ndarray): The row indices for the spatial random effects.
col_ind (ndarray): The column indices for the spatial random effects.
R_inv (ndarray): The inverse of the spatial correlation matrix.
n_loc (int): The number of spatial locations.
Returns:
None
"""
# Define the priors
beta_0 = np.random.normal(0, 10)
sig2_psi = invgamma.rvs(1, 1)
prec_use = R_inv / sig2_psi
psi = np.random.multivariate_normal(np.zeros(n_loc), prec_use)
beta = np.exp(np.random.normal(0, 10, size=p))
beta_sigma = np.random.normal(0, 10, size=p_sigma)
# Calculate the linear predictor
linpred = np.dot(x[:, :p], beta)
# Loop through the observations and sample the response and censored values
for i in range(n):
mu = beta_0 + linpred[i] + np.abs(psi[row_ind[i]] - psi[col_ind[i]])
var_out = np.exp(beta_sigma[0] + mu * beta_sigma[1] + mu ** 2 * beta_sigma[2] + mu ** 3 * beta_sigma[3])
log_V[i] = np.random.normal(mu, np.sqrt(var_out))
censored[i] = np.random.uniform(log_V[i], c[i])
# nimble_code7 function
def nimble_code7(x, p, n, c, log_V, censored, row_ind, col_ind, R_inv, n_loc):
"""
Implement the seventh NIMBLE code block.
Parameters:
x (ndarray): The feature matrix.
p (int): The number of features.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
row_ind (ndarray): The row indices for the spatial random effects.
col_ind (ndarray): The column indices for the spatial random effects.
R_inv (ndarray): The inverse of the spatial correlation matrix.
n_loc (int): The number of spatial locations.
Returns:
None
"""
# Define the priors
beta_0 = np.random.normal(0, 10)
sig2_psi = invgamma.rvs(1, 1)
prec_use = R_inv / sig2_psi
psi = np.random.multivariate_normal(np.zeros(n_loc), prec_use)
beta = np.exp(np.random.normal(0, 10, size=p))
sigma2 = invgamma.rvs(1, 1)
# Calculate the linear predictor
linpred = np.dot(x[:, :p], beta)
# Loop through the observations and sample the response and censored values
for i in range(n):
mu = beta_0 + linpred[i] + (psi[row_ind[i]] - psi[col_ind[i]])**2
log_V[i] = np.random.normal(mu, np.sqrt(sigma2))
censored[i] = np.random.uniform(log_V[i], c[i])
# nimble_code8 function
def nimble_code8(x, p, p_sigma, n, c, log_V, censored, row_ind, col_ind, R_inv, n_loc):
"""
Implement the eighth NIMBLE code block.
Parameters:
x (ndarray): The feature matrix.
p (int): The number of features.
p_sigma (int): The number of features for the variance model.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
row_ind (ndarray): The row indices for the spatial random effects.
col_ind (ndarray): The column indices for the spatial random effects.
R_inv (ndarray): The inverse of the spatial correlation matrix.
n_loc (int): The number of spatial locations.
Returns:
None
"""
# Define the priors
beta_0 = np.random.normal(0, 10)
sig2_psi = invgamma.rvs(1, 1)
prec_use = R_inv / sig2_psi
psi = np.random.multivariate_normal(np.zeros(n_loc), prec_use)
beta = np.exp(np.random.normal(0, 10, size=p))
beta_sigma = np.random.normal(0, 10, size=p_sigma)
# Calculate the linear predictor and the variance
linpred = np.dot(x[:, :p], beta)
var_out = np.exp(np.dot(X_sigma[:, :p_sigma], beta_sigma))
# Loop through the observations and sample the response and censored values
for i in range(n):
mu = beta_0 + linpred[i] + (psi[row_ind[i]] - psi[col_ind[i]])**2
log_V[i] = np.random.normal(mu, np.sqrt(var_out[i]))
censored[i] = np.random.uniform(log_V[i], c[i])
# nimble_code9 function
def nimble_code9(x, p, p_sigma, n, c, log_V, censored, row_ind, col_ind, R_inv, n_loc):
"""
Implement the ninth NIMBLE code block.
Parameters:
x (ndarray): The feature matrix.
p (int): The number of features.
p_sigma (int): The number of features for the variance model.
n (int): The number of observations.
c (ndarray): The censoring values.
log_V (ndarray): The log-transformed response variable.
censored (ndarray): The censored observations.
row_ind (ndarray): The row indices for the spatial random effects.
col_ind (ndarray): The column indices for the spatial random effects.
R_inv (ndarray): The inverse of the spatial correlation matrix.
n_loc (int): The number of spatial locations.
Returns:
None
"""
# Define the priors
beta_0 = np.random.normal(0, 10)
sig2_psi = invgamma.rvs(1, 1)
prec_use = R_inv / sig2_psi
psi = np.random.multivariate_normal(np.zeros(n_loc), prec_use)
beta = np.exp(np.random.normal(0, 10, size=p))
beta_sigma = np.random.normal(0, 10, size=p_sigma)
# Calculate the linear predictor
linpred = np.dot(x[:, :p], beta)
# Loop through the observations and sample the response and censored values
for i in range(n):
mu = beta_0 + linpred[i] + (psi[row_ind[i]] - psi[col_ind[i]])**2
var_out = np.exp(beta_sigma[0] + mu * beta_sigma[1] + mu ** 2 * beta_sigma[2] + mu ** 3 * beta_sigma[3])
log_V[i] = np.random.normal(mu, np.sqrt(var_out))
censored[i] = np.random.uniform(log_V[i], c[i])