This repository has been archived by the owner on Apr 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathshow_prediction.py
135 lines (102 loc) · 4.15 KB
/
show_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import cv2
import json
import os
import sys
if len(sys.argv)!=2:
print(f'USAGE: {sys.argv[0]} <path_to_video>')
exit()
import tensorflow as tf
gpu = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpu[0], True)
tf.config.set_visible_devices([], 'GPU')
from object_detection.utils import label_map_util
from object_detection.utils import config_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.builders import model_builder
import time
treshold = 0.6
def get_keypoint_tuples(eval_config):
"""Return a tuple list of keypoint edges from the eval config.
Args:
eval_config: an eval config containing the keypoint edges
Returns:
a list of edge tuples, each in the format (start, end)
"""
tuple_list = []
kp_list = eval_config.keypoint_edge
for edge in kp_list:
tuple_list.append((edge.start, edge.end))
return tuple_list
def get_model_detection_function(model):
"""Get a tf.function for detection."""
@tf.function
def detect_fn(image):
"""Detect objects in image."""
image, shapes = model.preprocess(image)
prediction_dict = model.predict(image, shapes)
detections = model.postprocess(prediction_dict, shapes)
return detections, prediction_dict, tf.reshape(shapes, [-1])
return detect_fn
if __name__ == '__main__':
pipeline_config = 'model/detection_model/inference_graph/pipeline.config'
model_dir = 'model/detection_model/inference_graph/checkpoint'
configs = config_util.get_configs_from_pipeline_file(pipeline_config)
model_config = configs['model']
detection_model = model_builder.build(
model_config=model_config, is_training=False)
ckpt = tf.compat.v2.train.Checkpoint(
model=detection_model)
ckpt.restore(os.path.join(model_dir, 'ckpt-0')).expect_partial()
detect_fn = get_model_detection_function(detection_model)
label_map_path = os.path.join("model/detection_model/", configs['eval_input_config'].label_map_path)
label_map = label_map_util.load_labelmap(label_map_path)
categories = label_map_util.convert_label_map_to_categories(
label_map,
max_num_classes=label_map_util.get_max_label_map_index(label_map),
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
label_map_dict = label_map_util.get_label_map_dict(
label_map, use_display_name=True)
cap = cv2.VideoCapture(sys.argv[1])
i = 0
frame_start = 0
import matplotlib.pyplot as plt
while(cap.isOpened()):
frame_end = time.time()
print(f'fps: {1/(frame_end-frame_start)}')
frame_start = time.time()
ret, frame = cap.read()
i += 1
frame = frame.astype('uint8')
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
input_tensor = tf.convert_to_tensor(
np.expand_dims(rgb_frame, 0), dtype=tf.float32)
detections, predictions_dict, shapes = detect_fn(input_tensor)
boxes = detections['detection_boxes'][0]
scores = detections['detection_scores'][0]
resized = cv2.resize(frame, (800, 600))
viz_utils.visualize_boxes_and_labels_on_image_array(
resized,
detections['detection_boxes'][0].numpy(),
(detections['detection_classes'][0].numpy() + 1).astype(int),
detections['detection_scores'][0].numpy(),
category_index,
use_normalized_coordinates=True,
max_boxes_to_draw=200,
min_score_thresh=.30,
agnostic_mode=False,
keypoints=None,
keypoint_scores=None,
keypoint_edges=get_keypoint_tuples(configs['eval_config']))
# j = 0
# while scores[j] > treshold:
# j += 1
# box = boxes[j]
# cv2.rectangle(resized, (int(box[1]*800), int(box[0]*600)),
# (int(box[3]*800), int(box[2]*600)), (255, 0, 255), 2)
cv2.imshow('frame', resized)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()