-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_league.py
223 lines (190 loc) · 7.56 KB
/
train_league.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import ray
import gym
import logging
import argparse
from matplotlib import pyplot as plt
from utils import ProgressBar,ma_sample,get_winrate_and_weight,register_restore_weight_trainer
#from custom_model import CustomFullyConnectedNetwork,KerasBatchNormModel,BatchNormModel,OriginalNetwork
logger = logging.getLogger()
logger.setLevel(logging.INFO)
from ray.rllib import agents
import numpy as np
import pickle
from ray.rllib.utils import try_import_tf
import os
import pandas as pd
tf = try_import_tf()
from ray.rllib.agents.impala.vtrace_policy import VTraceTFPolicy
from ray.rllib.agents.impala.impala import DEFAULT_CONFIG
from ray.rllib.env.atari_wrappers import is_atari
from ray.rllib.models import ModelCatalog
from ray.tune.registry import register_env
from ray import tune
from agi.nl_holdem_env import NlHoldemEnvWithOpponent
from agi.nl_holdem_net import NlHoldemNet
from agi.nl_holdem_lg_net import NlHoldemLgNet
ModelCatalog.register_custom_model('NlHoldemNet', NlHoldemNet)
ModelCatalog.register_custom_model('NlHoldemLgNet', NlHoldemLgNet)
from agi.league import League
from ray.rllib.agents.impala.impala import ImpalaTrainer
def static_vars(**kwargs):
def decorate(func):
for k in kwargs:
setattr(func, k, kwargs[k])
return func
return decorate
parser = argparse.ArgumentParser()
parser.add_argument('--conf', type=str)
parser.add_argument('--gap', type=int, default=1000)
parser.add_argument('--sp', type=float, default=0.0)
parser.add_argument('--exg_oppo_prob', type=float, default=0.01)
parser.add_argument('--upwin', type=float, default=1)
parser.add_argument('--kbest', type=int, default=5)
parser.add_argument('--league_tracker_n', type=float, default=10000)
parser.add_argument('--last_num', type=int, default=100000)
parser.add_argument('--rwd_update_ratio', type=float, default=1.0)
parser.add_argument('--restore', type=str,default=None)
parser.add_argument('--output_dir', type=str,default="league/history_agents")
parser.add_argument('--mode', type=str, default="local")
parser.add_argument('--experiment_name', default='run_trial_1', type=str) # please change a new name
args = parser.parse_args()
if args.mode == "local":
ray.init()
else:
raise RuntimeError("unknown mode: {}".format(args.mode))
conf = eval(open(args.conf).read().strip())
register_env("NlHoldemEnvWithOpponent", lambda config: NlHoldemEnvWithOpponent(
conf
))
league = League.remote(
n=args.league_tracker_n,
last_num=args.last_num,
kbest=args.kbest,
output_dir=args.output_dir,
)
def get_train(weight):
if weight is None:
pweight = None
else:
pweight = {}
for k,v in weight.items():
k = k.replace("oppo_policy","default_policy")
pweight[k] = v
def train_fn_load(config, reporter):
agent = ImpalaTrainer(config=config)
print("LOAD: after init, before load")
if pweight is not None:
agent.workers.local_worker().get_policy().set_weights(pweight)
agent.workers.sync_weights()
print("LOAD: before train, after load")
while True:
result = agent.train()
reporter(**result)
agent.stop()
return train_fn_load
if args.restore is not None:
get_winrate_and_weight(args.restore,league)
pid = ray.get(league.get_latest_policy_id.remote())
print("latest pid: {}".format(pid))
weight = ray.get(league.get_weight.remote(pid))
#register_restore_weight_trainer(weight)
train_func = get_train(weight)
else:
train_func = get_train(None)
@static_vars(league=league)
def on_episode_end(info):
envs = info["env"]
policies = info['policy']
default_policy = policies["default_policy"]
for env in envs.vector_env.envs:
if env.is_done:
# 1. 更新结果到league
last_reward = env.last_reward
pid = env.oppo_name
if np.random.random() < args.rwd_update_ratio:
if pid == "self":
ray.get(on_episode_end.league.update_result.remote(None,last_reward,selfplay=True))
else:
ray.get(on_episode_end.league.update_result.remote(pid,last_reward,selfplay=False))
# 2. 更新对手权重
# 以0.2的概率self play
if np.random.random() < args.exg_oppo_prob:
if np.random.random() < args.sp:
p_weights = default_policy.get_weights()
weight = {}
for k,v in p_weights.items():
k = k.replace("default_policy","oppo_policy")
weight[k] = v
env.oppo_name = "self"
env.oppo_policy.set_weights(weight)
else:
pid,weight = ray.get(on_episode_end.league.select_opponent.remote())
env.oppo_name = pid
env.oppo_policy.set_weights(weight)
@static_vars(league=league)
def on_episode_start(info):
envs = info["env"]
policies = info['policy']
default_policy = policies["default_policy"]
# 如果league 没有第一个权重,那么使用当前policy中的权重当作第一个
if not ray.get(on_episode_start.league.initized.remote()):
p_weights = default_policy.get_weights()
weight = {}
for k,v in p_weights.items():
k = k.replace("default_policy","oppo_policy")
weight[k] = v
ray.get(on_episode_start.league.initize_if_possible.remote(weight))
for env in envs.vector_env.envs:
if env.oppo_name is None:
pid,weight = ray.get(on_episode_start.league.select_opponent.remote())
env.oppo_name = pid
env.oppo_policy.set_weights(weight)
@static_vars(league=league)
def on_episode_step(info):
pass
@static_vars(league=league,count=0)
def on_train_result(info):
winrates_pd = ray.get(on_train_result.league.get_statics_table.remote())
winrates_pd.to_csv("winrates.csv",header=False,index=False)
table_t = winrates_pd.T
table_t["mbb/h"] = np.asarray(table_t["winrate"] / 2.0 * 1000.0,np.int)
info['result']['winrates'] = table_t.T
on_train_result.count += 1
gap = args.gap
if ray.get(on_train_result.league.winrate_all_match.remote(args.upwin)) \
or on_train_result.count % gap == gap - 1:
trainer = info["trainer"]
p_weights = trainer.get_weights()["default_policy"]
weight = {}
for k,v in p_weights.items():
k = k.replace("default_policy","oppo_policy")
weight[k] = v
ray.get(on_train_result.league.add_weight.remote(weight))
if not os.path.exists("weights"):
os.makedirs("weights")
with open('output_weight.pkl','wb') as whdl:
pickle.dump(weight,whdl)
with open('weights/output_weight_{}.pkl'.format(on_train_result.count),'wb') as whdl:
pickle.dump(weight,whdl)
tune_config = {
'max_sample_requests_in_flight_per_worker': 1,
'num_data_loader_buffers': 4,
"callbacks": {
"on_episode_end": on_episode_end,
"on_episode_start": on_episode_start,
"on_episode_step": on_episode_step,
"on_train_result": on_train_result,
},
}
tune_config.update(conf)
tune.run(
train_func,
config=tune_config,
stop={
'timesteps_total': 10000000000,
},
local_dir='log/',
#resources_per_trial=ImpalaTrainer.default_resource_request,
#resources_per_trial=ImpalaTrainer.default_resource_request(tune_config),
resources_per_trial={'cpu':1,'gpu':1},
)