-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathsimple_train_epoch.php
78 lines (61 loc) · 2.8 KB
/
simple_train_epoch.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
<?php
$num_input = 2;
$num_output = 1;
$num_layers = 3;
$num_neurons_hidden = 3;
$desired_error = 0.0001;
$max_epochs = 500000;
$current_epoch = 0;
$epochs_between_saves = 100; // Minimum number of epochs between saves
$epochs_since_last_save = 0;
$filename = dirname(__FILE__) . "/xor.data";
// Initialize psudo mse (mean squared error) to a number greater than the desired_error
// this is what the network is trying to minimize.
$psudo_mse_result = $desired_error * 10000; // 1
$best_mse = $psudo_mse_result; // keep the last best seen MSE network score here
// Initialize ANN
$ann = fann_create_standard($num_layers, $num_input, $num_neurons_hidden, $num_output);
if ($ann) {
echo 'Training ANN... ' . PHP_EOL;
// Configure the ANN
fann_set_training_algorithm ($ann , FANN_TRAIN_BATCH);
fann_set_activation_function_hidden($ann, FANN_SIGMOID_SYMMETRIC);
fann_set_activation_function_output($ann, FANN_SIGMOID_SYMMETRIC);
// Read training data
$train_data = fann_read_train_from_file($filename);
// Check if psudo_mse_result is greater than our desired_error
// if so keep training so long as we are also under max_epochs
while(($psudo_mse_result > $desired_error) && ($current_epoch <= $max_epochs)){
$current_epoch++;
$epochs_since_last_save++;
// See: http://php.net/manual/en/function.fann-train-epoch.php
// Train one epoch with the training data stored in data.
//
// One epoch is where all of the training data is considered
// exactly once.
//
// This function returns the MSE error as it is calculated
// either before or during the actual training. This is not the
// actual MSE after the training epoch, but since calculating this
// will require to go through the entire training set once more.
// It is more than adequate to use this value during training.
$psudo_mse_result = fann_train_epoch ($ann , $train_data );
echo 'Epoch ' . $current_epoch . ' : ' . $psudo_mse_result . PHP_EOL; // report
// If we haven't saved the ANN in a while...
// and the current network is better then the previous best network
// as defined by the current MSE being less than the last best MSE
// Save it!
if(($epochs_since_last_save >= $epochs_between_saves) && ($psudo_mse_result < $best_mse)){
$best_mse = $psudo_mse_result; // we have a new best_mse
// Save a Snapshot of the ANN
fann_save($ann, dirname(__FILE__) . "/xor.net");
echo 'Saved ANN.' . PHP_EOL; // report the save
$epochs_since_last_save = 0; // reset the count
}
} // While we're training
echo 'Training Complete! Saving Final Network.' . PHP_EOL;
// Save the final network
fann_save($ann, dirname(__FILE__) . "/xor.net");
fann_destroy($ann); // free memory
}
echo 'All Done!' . PHP_EOL;