-
Notifications
You must be signed in to change notification settings - Fork 642
/
hubconf.py
64 lines (49 loc) · 1.82 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
def generator(pretrained=True, device="cpu", progress=True, check_hash=True):
from model import Generator
release_url = "https://github.com/bryandlee/animegan2-pytorch/raw/main/weights"
known = {
name: f"{release_url}/{name}.pt"
for name in [
'celeba_distill', 'face_paint_512_v1', 'face_paint_512_v2', 'paprika'
]
}
device = torch.device(device)
model = Generator().to(device)
if type(pretrained) == str:
# Look if a known name is passed, otherwise assume it's a URL
ckpt_url = known.get(pretrained, pretrained)
pretrained = True
else:
ckpt_url = known.get('face_paint_512_v2')
if pretrained is True:
state_dict = torch.hub.load_state_dict_from_url(
ckpt_url,
map_location=device,
progress=progress,
check_hash=check_hash,
)
model.load_state_dict(state_dict)
return model
def face2paint(device="cpu", size=512, side_by_side=False):
from PIL import Image
from torchvision.transforms.functional import to_tensor, to_pil_image
def face2paint(
model: torch.nn.Module,
img: Image.Image,
size: int = size,
side_by_side: bool = side_by_side,
device: str = device,
) -> Image.Image:
w, h = img.size
s = min(w, h)
img = img.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
img = img.resize((size, size), Image.LANCZOS)
with torch.no_grad():
input = to_tensor(img).unsqueeze(0) * 2 - 1
output = model(input.to(device)).cpu()[0]
if side_by_side:
output = torch.cat([input[0], output], dim=2)
output = (output * 0.5 + 0.5).clip(0, 1)
return to_pil_image(output)
return face2paint