Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding normalize step to recipe #16

Merged
merged 2 commits into from
May 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions 1.generate-profiles/2.normalize.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
import os
import sys
import pathlib
import argparse
import warnings
import pandas as pd

from pycytominer import normalize

sys.path.append("../scripts")
from config_utils import process_config_file

parser = argparse.ArgumentParser()
parser.add_argument(
"--config_file",
help="configuration yaml file for the profiling pipeline",
default="profiling_config.yaml",
)
args = parser.parse_args()
config_file = args.config_file

config = process_config_file(config_file)

# Extract config arguments
core_args = config["core"]
batch = core_args["batch"]
aggregate_args = config["aggregate"]
normalize_args = config["normalize"]

ignore_files = core_args["ignore_files"]
float_format = core_args["float_format"]
compression = core_args["compression"]

normalize_singlecell_from_single_file = core_args["output_one_single_cell_file_only"]
normalize_levels = normalize_args["levels"]
normalize_by_samples = normalize_args["by_samples"]
normalize_these_features = normalize_args["features"]
normalize_method = normalize_args["method"]
normalize_input_files = aggregate_args["aggregate_output_files"]
normalize_output_files = normalize_args["normalize_output_files"]

for data_level in normalize_levels:
if data_level == "single_cell":
if not normalize_singlecell_from_single_file:
continue

file_to_normalize = normalize_input_files[data_level]
output_file = normalize_output_files[data_level]

print(f"Now normalizing {data_level}...with operation: {normalize_method}")

normalize_df = normalize(
profiles=file_to_normalize,
features=normalize_these_features,
samples=normalize_by_samples,
method=normalize_method,
output_file=output_file,
compression=compression,
float_format=float_format,
)
12 changes: 12 additions & 0 deletions 1.generate-profiles/profiling_config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ core:
site_dir: ../0.preprocess-sites/data/
output_single_cell_dir: single_cell/
output_profile_dir: profiles/
output_one_single_cell_file_only: true
categorize_cell_quality: simple
compression: gzip
float_format: "%.5g"
Expand Down Expand Up @@ -64,3 +65,14 @@ aggregate:
guide:
- Metadata_Foci_Barcode_MatchedTo_GeneCode
- Metadata_Foci_Barcode_MatchedTo_Barcode
---
normalize:
perform: true
output_basedir: data/profiles
Copy link
Member

@ErinWeisbart ErinWeisbart May 29, 2020

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Everywhere else so far we've set config defaults to single folders instead of nested folders.
Do we need to maintain this in case someone is working in an OS that uses \ not / ? Though I guess we have / at the end of all of our paths, so never mind on that remark.
I guess I just want to point this out and it's not necessarily a problem.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

great catch - yes this is definitely something to be mindful of. Fortunately, pathlib is great and will take care of that issue under the hood.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Also note that we are modeling the directory structure in this project from cytomining/profiling-handbook#54 (comment)

method: standardize
levels:
- gene
- guide
- single_cell
by_samples: all
features: infer
25 changes: 25 additions & 0 deletions scripts/config_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,31 @@ def generate_profiles_config(config):
config["aggregate"]["output_basedir"], batch
)

# Build aggregated output files
config["aggregate"]["aggregate_output_files"] = {}
for aggregate_level, aggregate_columns in config["aggregate"]["levels"].items():
config["aggregate"]["aggregate_output_files"][aggregate_level] = pathlib.Path(
config["aggregate"]["aggregate_output_dir"],
f"{batch}_{aggregate_level}.csv.gz",
)

config["aggregate"]["aggregate_output_files"]["single_cell"] = config[
"single_cell"
]["single_file_only_output_file"]

# Build paths to normalize yaml document
config["normalize"]["normalize_output_dir"] = pathlib.Path(
config["normalize"]["output_basedir"], batch
)

# Build normalized output files
config["normalize"]["normalize_output_files"] = {}
for normalize_level in config["normalize"]["levels"]:
config["normalize"]["normalize_output_files"][normalize_level] = pathlib.Path(
config["normalize"]["normalize_output_dir"],
f"{batch}_{normalize_level}_normalized.csv.gz",
)

return config


Expand Down