This repository has been archived by the owner on Jun 16, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 230
/
Copy pathstrategies.py
288 lines (245 loc) · 10.4 KB
/
strategies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import copy
import math
import random
import sys
import time
import numpy as np
import gtp
import go
import utils
def sorted_moves(probability_array):
coords = [(a, b) for a in range(go.N) for b in range(go.N)]
return sorted(coords, key=lambda c: probability_array[c], reverse=True)
def translate_gtp_colors(gtp_color):
if gtp_color == gtp.BLACK:
return go.BLACK
elif gtp_color == gtp.WHITE:
return go.WHITE
else:
return go.EMPTY
def is_move_reasonable(position, move):
return position.is_move_legal(move) and go.is_eyeish(position.board, move) != position.to_play
def select_most_likely(position, move_probabilities):
for move in sorted_moves(move_probabilities):
if is_move_reasonable(position, move):
return move
return None
def select_weighted_random(position, move_probabilities):
selection = random.random()
selected_move = None
current_probability = 0
# technically, don't have to sort in order to correctly simulate a random
# draw, but it cuts down on how many additions we do.
for move, move_prob in np.ndenumerate(move_probabilities):
current_probability += move_prob
if current_probability > selection:
selected_move = move
break
if is_move_reasonable(position, selected_move):
return selected_move
else:
# fallback in case the selected move was illegal
return select_most_likely(position, move_probabilities)
class GtpInterface(object):
def __init__(self):
self.size = 9
self.position = None
self.komi = 6.5
self.clear()
def set_size(self, n):
self.size = n
go.set_board_size(n)
self.clear()
def set_komi(self, komi):
self.komi = komi
self.position.komi = komi
def clear(self):
self.position = go.Position(komi=self.komi)
def accomodate_out_of_turn(self, color):
if not translate_gtp_colors(color) == self.position.to_play:
self.position.flip_playerturn(mutate=True)
def make_move(self, color, vertex):
coords = utils.parse_pygtp_coords(vertex)
self.accomodate_out_of_turn(color)
self.position = self.position.play_move(coords, color=translate_gtp_colors(color))
return self.position is not None
def get_move(self, color):
self.accomodate_out_of_turn(color)
move = self.suggest_move(self.position)
return utils.unparse_pygtp_coords(move)
def suggest_move(self, position):
raise NotImplementedError
class RandomPlayer(GtpInterface):
def suggest_move(self, position):
possible_moves = go.ALL_COORDS[:]
random.shuffle(possible_moves)
for move in possible_moves:
if is_move_reasonable(position, move):
return move
return None
class PolicyNetworkBestMovePlayer(GtpInterface):
def __init__(self, policy_network, read_file):
self.policy_network = policy_network
self.read_file = read_file
super().__init__()
def clear(self):
super().clear()
self.refresh_network()
def refresh_network(self):
# Ensure that the player is using the latest version of the network
# so that the network can be continually trained even as it's playing.
self.policy_network.initialize_variables(self.read_file)
def suggest_move(self, position):
if position.recent and position.n > 100 and position.recent[-1].move == None:
# Pass if the opponent passes
return None
move_probabilities = self.policy_network.run(position)
return select_most_likely(position, move_probabilities)
class PolicyNetworkRandomMovePlayer(GtpInterface):
def __init__(self, policy_network, read_file):
self.policy_network = policy_network
self.read_file = read_file
super().__init__()
def clear(self):
super().clear()
self.refresh_network()
def refresh_network(self):
# Ensure that the player is using the latest version of the network
# so that the network can be continually trained even as it's playing.
self.policy_network.initialize_variables(self.read_file)
def suggest_move(self, position):
if position.recent and position.n > 100 and position.recent[-1].move == None:
# Pass if the opponent passes
return None
move_probabilities = self.policy_network.run(position)
return select_weighted_random(position, move_probabilities)
# Exploration constant
c_PUCT = 5
class MCTSNode():
'''
A MCTSNode has two states: plain, and expanded.
An plain MCTSNode merely knows its Q + U values, so that a decision
can be made about which MCTS node to expand during the selection phase.
When expanded, a MCTSNode also knows the actual position at that node,
as well as followup moves/probabilities via the policy network.
Each of these followup moves is instantiated as a plain MCTSNode.
'''
@staticmethod
def root_node(position, move_probabilities):
node = MCTSNode(None, None, 0)
node.position = position
node.expand(move_probabilities)
return node
def __init__(self, parent, move, prior):
self.parent = parent # pointer to another MCTSNode
self.move = move # the move that led to this node
self.prior = prior
self.position = None # lazily computed upon expansion
self.children = {} # map of moves to resulting MCTSNode
self.Q = self.parent.Q if self.parent is not None else 0 # average of all outcomes involving this node
self.U = prior # monte carlo exploration bonus
self.N = 0 # number of times node was visited
def __repr__(self):
return "<MCTSNode move=%s prior=%s score=%s is_expanded=%s>" % (self.move, self.prior, self.action_score, self.is_expanded())
@property
def action_score(self):
# Note to self: after adding value network, must calculate
# self.Q = weighted_average(avg(values), avg(rollouts)),
# as opposed to avg(map(weighted_average, values, rollouts))
return self.Q + self.U
def is_expanded(self):
return self.position is not None
def compute_position(self):
self.position = self.parent.position.play_move(self.move)
return self.position
def expand(self, move_probabilities):
self.children = {move: MCTSNode(self, move, prob)
for move, prob in np.ndenumerate(move_probabilities)}
# Pass should always be an option! Say, for example, seki.
self.children[None] = MCTSNode(self, None, 0)
def backup_value(self, value):
self.N += 1
if self.parent is None:
# No point in updating Q / U values for root, since they are
# used to decide between children nodes.
return
self.Q, self.U = (
self.Q + (value - self.Q) / self.N,
c_PUCT * math.sqrt(self.parent.N) * self.prior / self.N,
)
# must invert, because alternate layers have opposite desires
self.parent.backup_value(-value)
def select_leaf(self):
current = self
while current.is_expanded():
current = max(current.children.values(), key=lambda node: node.action_score)
return current
class MCTS(GtpInterface):
def __init__(self, policy_network, read_file, seconds_per_move=5):
self.policy_network = policy_network
self.seconds_per_move = seconds_per_move
self.max_rollout_depth = go.N * go.N * 3
self.read_file = read_file
super().__init__()
def clear(self):
super().clear()
self.refresh_network()
def refresh_network(self):
# Ensure that the player is using the latest version of the network
# so that the network can be continually trained even as it's playing.
self.policy_network.initialize_variables(self.read_file)
def suggest_move(self, position):
if position.caps[0] + 50 < position.caps[1]:
return gtp.RESIGN
start = time.time()
move_probs = self.policy_network.run(position)
root = MCTSNode.root_node(position, move_probs)
while time.time() - start < self.seconds_per_move:
self.tree_search(root)
# there's a theoretical bug here: if you refuse to pass, this AI will
# eventually start filling in its own eyes.
return max(root.children.keys(), key=lambda move, root=root: root.children[move].N)
def tree_search(self, root):
print("tree search", file=sys.stderr)
# selection
chosen_leaf = root.select_leaf()
# expansion
position = chosen_leaf.compute_position()
if position is None:
print("illegal move!", file=sys.stderr)
# See go.Position.play_move for notes on detecting legality
del chosen_leaf.parent.children[chosen_leaf.move]
return
print("Investigating following position:\n%s" % (chosen_leaf.position,), file=sys.stderr)
move_probs = self.policy_network.run(position)
chosen_leaf.expand(move_probs)
# evaluation
value = self.estimate_value(root, chosen_leaf)
# backup
print("value: %s" % value, file=sys.stderr)
chosen_leaf.backup_value(value)
def estimate_value(self, root, chosen_leaf):
# Estimate value of position using rollout only (for now).
# (TODO: Value network; average the value estimations from rollout + value network)
leaf_position = chosen_leaf.position
current = copy.deepcopy(leaf_position)
while current.n < self.max_rollout_depth:
move_probs = self.policy_network.run(current)
current = self.play_valid_move(current, move_probs)
if len(current.recent) > 2 and current.recent[-1].move == current.recent[-2].move == None:
break
else:
print("max rollout depth exceeded!", file=sys.stderr)
perspective = 1 if leaf_position.to_play == root.position.to_play else -1
return current.score() * perspective
def play_valid_move(self, position, move_probs):
for move in sorted_moves(move_probs):
if go.is_eyeish(position.board, move):
continue
try:
candidate_pos = position.play_move(move, mutate=True)
except go.IllegalMove:
continue
else:
return candidate_pos
return position.pass_move(mutate=True)