-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
294 lines (239 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import dgl
import torch
import pickle
import random
import argparse
import numpy as np
import datetime as dt
from pprint import pprint
from torchinfo import summary
import torch.nn.functional as F
from torch.utils.data import DataLoader
from data import StockGraph
from model import *
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning) # PyTorch 2.4.0 deprecation warnings
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# torch.backends.cudnn.deterministic = True
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.benchmark = False
dgl.random.seed(seed)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':16:8'
def warmup_lr(optimizer, lr, epoch, size):
if epoch <= size:
for param_group in optimizer.param_groups:
param_group['lr'] = lr * epoch / size
def load_dataset(market, args):
train_dataset = StockGraph(market, dt.datetime(2013,1,2), dt.datetime(2015,12,31), args.sequence_length, args.add_self_loop, args.return_period)
val_dataset = StockGraph(market, dt.datetime(2016,1,4), dt.datetime(2016,12,30), args.sequence_length, args.add_self_loop, args.return_period)
test_dataset = StockGraph(market, dt.datetime(2017,1,3), dt.datetime(2017,12,8), args.sequence_length, args.add_self_loop, args.return_period)
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=args.nworkers)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=args.nworkers)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=args.nworkers)
return train_dataset, train_loader, val_loader, test_loader
def get_relational_graph(sample_idx, dataset, args):
if args.relational_graph == 'wiki':
return dataset.wiki_graph
if args.relational_graph == 'industry':
return dataset.industry_graph
# if args.relational_graph == 'correlation':
# return dataset.correlation_graph(sample_idx, args.corr_graph_periods, args.corr_graph_thresh)
def regularizer(model, args):
l1 = torch.sum(torch.stack([torch.sum(torch.abs(param)) for param in model.parameters()]))
l2 = torch.sum(torch.stack([torch.sum(torch.pow(param, 2)) for param in model.parameters()]))
return (args.l1 * l1 + args.l2 * l2) * int(model.training)
def loss_fn(preds, targets, model, args):
assert preds.shape == targets.shape
mse_loss = F.mse_loss(preds, targets)
rank_loss = torch.mean(F.relu(- (preds - preds.T) * (targets - targets.T)))
return mse_loss + args.alpha * rank_loss + regularizer(model, args)
def mrr_fn(preds, targets, k=1):
assert preds.shape == targets.shape
preds_rank = torch.sort(preds, descending=True, dim=0)[1]
targets_rank = torch.sort(targets, descending=True, dim=0)[1]
reciprocal_rank = 1 / (torch.nonzero(preds_rank == targets_rank.T, as_tuple=True)[1] + 1)
return torch.mean(reciprocal_rank[:k])
def irr_fn(preds, targets, k=1):
assert preds.shape == targets.shape
preds_rank = torch.sort(preds, descending=True, dim=0)[1].squeeze()
investment_return = torch.mean(targets[preds_rank[:k]].squeeze())
return investment_return
def train(model, dataset, train_loader, device, optimizer, scaler, args):
model.train()
total_loss, total = 0, 0
for sample_idx, stock_features, stock_returns in train_loader:
stock_features = stock_features.squeeze(dim=0).to(device)
stock_returns = stock_returns.squeeze(dim=0).to(device)
relational_graph = get_relational_graph(sample_idx, dataset, args).to(device)
optimizer.zero_grad()
with torch.autocast(device_type=device.type, enabled=args.use_amp):
pred_stock_returns = model(relational_graph, stock_features)
loss = loss_fn(pred_stock_returns, stock_returns, model, args)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
total = total + 1
total_loss = total_loss + loss.item()
return total_loss / total - regularizer(model, args).item()
@torch.no_grad()
def evaluate(model, dataset, dataloader, device, args):
model.eval()
total, total_mse, total_loss = 0, 0, 0
total_mrr = {k: 0 for k in args.k_list}
total_irr = {k: [] for k in args.k_list}
for sample_idx, stock_features, stock_returns in dataloader:
stock_features = stock_features.squeeze(dim=0).to(device)
stock_returns = stock_returns.squeeze(dim=0).to(device)
relational_graph = get_relational_graph(sample_idx, dataset, args).to(device)
with torch.autocast(device_type=device.type, enabled=args.use_amp):
pred_stock_returns = model(relational_graph, stock_features)
total = total + 1
total_mse = total_mse + F.mse_loss(pred_stock_returns, stock_returns).item()
total_loss = total_loss + loss_fn(pred_stock_returns, stock_returns, model, args).item()
total_mrr = {k: total_mrr[k] + mrr_fn(pred_stock_returns, stock_returns, k).item() for k in args.k_list}
total_irr = {k: total_irr[k] + [irr_fn(pred_stock_returns, stock_returns, k).item()] for k in args.k_list}
total_mse = total_mse / total
total_loss = total_loss / total
total_mrr = {k: total_mrr[k] / total for k in args.k_list}
return total_mse, total_loss, total_mrr, total_irr
def run(model, dataset, train_loader, val_loader, test_loader, device, args, iter):
scaler = torch.amp.GradScaler(device=device.type, enabled=args.use_amp)
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wd)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=args.factor, patience=args.patience)
best_val_loss = 1e10
for epoch in range(args.epochs):
warmup_lr(optimizer, args.lr, epoch + 1, 10)
loss = train(model, dataset, train_loader, device, optimizer, scaler, args)
mse, loss, mrr, irr = evaluate(model, dataset, train_loader, device, args)
val_mse, val_loss, val_mrr, val_irr = evaluate(model, dataset, val_loader, device, args)
test_mse, test_loss, test_mrr, test_irr = evaluate(model, dataset, test_loader, device, args)
scheduler.step(loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
result = {
'val_mse': val_mse,
'val_mrr': val_mrr,
'val_irr': val_irr,
'val_loss': val_loss,
'test_mse': test_mse,
'test_mrr': test_mrr,
'test_irr': test_irr,
'test_loss': test_loss,
}
if (epoch + 1) == args.epochs or (epoch + 1) % args.log_every == 0:
print(f'Epoch {epoch+1:04d} | mse: {mse:.6f} | loss: {loss:.6f} | ' + ' | '.join([f'mrr_{k}: {mrr_k:.4f}' for k, mrr_k in mrr.items()] + [f'irr_{k}: {sum(irr_k):.4f}' for k, irr_k in irr.items()]))
print(f'val_mse: {val_mse:.6f} | val_loss: {val_loss:.6f} | ' + ' | '.join([f'val_mrr_{k}: {mrr_k:.4f}' for k, mrr_k in val_mrr.items()] + [f'val_irr_{k}: {sum(irr_k):.4f}' for k, irr_k in val_irr.items()]))
print(f'test_mse: {test_mse:.6f} | test_loss: {test_loss:.6f} | ' + ' | '.join([f'test_mrr_{k}: {mrr_k:.4f}' for k, mrr_k in test_mrr.items()] + [f'test_irr_{k}: {sum(irr_k):.4f}' for k, irr_k in test_irr.items()]))
# Save results
if args.save_results:
save_path = f'{args.market}_{args.model}' + (f'_{args.relational_agg}_{args.relational_graph}' if args.model != 'RankLSTM' else '')
os.makedirs(f'./logs/runs/{save_path}', exist_ok=True)
with open(f'./logs/runs/{save_path}/result_{iter}.pkl', 'wb') as file:
pickle.dump(result, file)
# Process irr
result['val_irr'] = {k: sum(irr_k) for k, irr_k in result['val_irr'].items()}
result['test_irr'] = {k: sum(irr_k) for k, irr_k in result['test_irr'].items()}
return result
if __name__ == '__main__':
argparser = argparse.ArgumentParser(
'FinSIR implementation on StockGraph',
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
argparser.add_argument('--cpu', action='store_true', help='CPU mode')
argparser.add_argument('--gpu', type=int, default=0, help='GPU device ID')
argparser.add_argument('--seed', type=int, default=0, help='seed')
argparser.add_argument('--nworkers', type=int, default=0, help='number of workers')
argparser.add_argument('--use-amp', action='store_true', help='use automatic mixed precision')
argparser.add_argument('--market', type=str, default='NYSE', help='market name', choices=['NYSE', 'NASDAQ'])
argparser.add_argument('--sequence-length', type=int, default=16, help='sample sequence length')
argparser.add_argument('--return-period', type=int, default=1, help='target return period')
# argparser.add_argument('--corr-graph-periods', type=str, default='20 60 125 250', help='list of periods for correlation graph')
# argparser.add_argument('--corr-graph-thresh', type=float, default=0.9, help='threshold for correlation graph')
argparser.add_argument('--add-self-loop', action='store_true', help='add self-loop to relational graph')
argparser.add_argument('--relational-graph', type=str, default='wiki', help='relational graph to use', choices=['wiki', 'industry']) # 'correlation'
argparser.add_argument('--model', type=str, default='FinSIR', help='model name', choices=['FinSIR', 'SimpleFinSIR', 'RelationalStockRanking', 'RankLSTM'])
argparser.add_argument('--nhidden', type=int, default=16, help='number of hidden units')
argparser.add_argument('--recurrent-layers', type=int, default=1, help='number of layers for recurrent message function')
argparser.add_argument('--recurrent-dropout', type=float, default=0, help='dropout rate for recurrent message function')
argparser.add_argument('--relational-agg', type=str, default='sum', help='aggregation type for relational convolution', choices=['sum', 'mean', 'sym', 'max', 'implicit', 'explicit'])
argparser.add_argument('--relational-dropout', type=float, default=0, help='dropout rate for relational convolution')
argparser.add_argument('--readout-layers', type=int, default=1, help='number of layers for readout function')
argparser.add_argument('--readout-dropout', type=float, default=0, help='dropout rate for readout function')
argparser.add_argument('--epochs', type=int, default=50, help='number of epochs')
argparser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
argparser.add_argument('--wd', type=float, default=0, help='weight decay')
argparser.add_argument('--l1', type=float, default=0, help='weight for L1 regularization')
argparser.add_argument('--l2', type=float, default=0, help='weight for L2 regularization')
argparser.add_argument('--factor', type=float, default=0.5, help='factor for learning rate decay')
argparser.add_argument('--patience', type=int, default=10, help='patience for learning rate decay')
argparser.add_argument('--alpha', type=float, default=1.0, help='weight for rank-aware loss')
argparser.add_argument('--k-list', type=str, default='1 5', help='list of k values for MRR and IRR evaluation')
argparser.add_argument('--nruns', type=int, default=10, help='number of runs')
argparser.add_argument('--log-every', type=int, default=10, help='log every LOG_EVERY epochs')
argparser.add_argument('--save-results', action='store_true', help='save final results')
args = argparser.parse_args()
# Validate arguments
if args.model == 'RelationalStockRanking' and args.relational_agg not in ['implicit', 'explicit']:
raise ValueError(f'{args.model}Model can only take relational_agg in ["implicit", "explicit"]')
if args.model in ['FinSIR', 'SimpleFinSIR'] and args.relational_agg not in ['sum', 'mean', 'sym', 'max']:
raise ValueError(f'{args.model}Model can only take relational_agg in ["sum", "mean", "sym", "max"]')
# Process string list inputs
# args.corr_graph_periods = [int(p) for p in args.corr_graph_periods.split(' ')]
args.k_list = [int(k) for k in args.k_list.split(' ')]
val_mses, val_mrrs, val_irrs = [], [], []
test_mses, test_mrrs, test_irrs = [], [], []
for i in range(args.nruns):
# Set seed
set_seed(args.seed + i)
# Load dataset
device = torch.device('cpu') if args.cpu else torch.device(f'cuda:{args.gpu}')
dataset, train_loader, val_loader, test_loader = load_dataset(args.market, args)
# Extract input shapes
input_dim = dataset[0][1].shape[-1]
edge_dim = {'wiki': dataset.wiki_graph.edata['feat'].shape[-1],
'industry': dataset.industry_graph.edata['feat'].shape[-1]}[args.relational_graph]
# 'correlation': len(args.corr_graph_periods) + 1
# Load model
Model = {'FinSIR': FinSIRModel, 'SimpleFinSIR': SimpleFinSIRModel, 'RelationalStockRanking': RelationalStockRankingModel, 'RankLSTM': RankLSTMModel}
model = Model[args.model](input_dim, edge_dim, args.nhidden, 1, args.recurrent_layers, args.recurrent_dropout,
args.relational_agg, args.relational_dropout, args.readout_layers, args.readout_dropout).to(device)
# model = torch.compile(model, mode='default')
summary(model)
# Training
result = run(model, dataset, train_loader, val_loader, test_loader, device, args, i)
val_mses.append(result['val_mse'])
val_mrrs.append(result['val_mrr'])
val_irrs.append(result['val_irr'])
test_mses.append(result['test_mse'])
test_mrrs.append(result['test_mrr'])
test_irrs.append(result['test_irr'])
print(args)
print(f'Runned {args.nruns} times')
process_results = lambda metrics: {k: [metrics[i][k] for i in range(args.nruns)] for k in args.k_list}
val_mrrs = process_results(val_mrrs)
val_irrs = process_results(val_irrs)
test_mrrs = process_results(test_mrrs)
test_irrs = process_results(test_irrs)
pprint({'Val MSE': val_mses,
'Val MRR': val_mrrs,
'Val IRR': val_irrs,
'Test MSE': test_mses,
'Test MRR': test_mrrs,
'Test IRR': test_irrs})
process_results = lambda metrics: {k: f'{np.mean(metrics[k]):.6f} ± {np.std(metrics[k]):.6f}' for k in args.k_list}
val_mrrs = process_results(val_mrrs)
val_irrs = process_results(val_irrs)
test_mrrs = process_results(test_mrrs)
test_irrs = process_results(test_irrs)
pprint({'Average val MSE': f'{np.mean(val_mses):.6f} ± {np.std(val_mses):.6f}',
'Average val MRR': val_mrrs,
'Average val IRR': val_irrs,
'Average test MSE': f'{np.mean(test_mses):.6f} ± {np.std(test_mses):.6f}',
'Average test MRR': test_mrrs,
'Average test IRR': test_irrs})