-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.yaml
32 lines (30 loc) · 1.35 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
### model config
# "bert": Proposed model, utilize BERT as seq extractor and GAT as struc & drug extractor
# === ablation models ===
# "wo_seq": Without sequence embedding
# "wo_struc": Without sturcture embedding
# "wo_drug": Without drug embedding
# "wo_pt": Without large-scaled pre-training
# "bilstm": Replace BERT in the model with BiLSTM
model_list: ["bert", 'wo_seq', 'wo_struc', 'wo_drug', 'wo_pt', "bilstm"]
### paths of file config
input_file: "./files/data/pafnucy_total_rdkit-smiles-v1.csv"
contact_map_file: "./files/data/3d_pdb/pdbbind_2016"
pretrained_model_pth: "./files/pretrain/BertModel.pth" # './files/pretrain/pytorch_model.pth'
bert_config: './files/pretrain/bert_config.json'
vocab_path: './files/pretrain/PPI_vocab.txt'
pre_ft_pth: "./results/[proposed]adan_nowarmup_reduce_pat10_fac0.5_minlr1e-5-bert_seed1145114_Sat-Nov--5-22:27:51-2022/best-[test]-model-testRMSE1.2898-epoch108.pth"
log_base: "./results"
tb_log: "./tb_runs"
### hyperparams cofing
p_dropout: 0.3 # 0.4
TASK: 'Affinity-Value' # target to predict
SMILES: "rdkit_smiles" # drug SMILES to input
nonspecial_vocab_size: 26 # the size of vocab without special tokens including "[PAD][CLS][SEP][MASK][UNK]"
max_seq_len: 512
# GAT parameters
radius: 2 # the iteration num of atom embedding
T: 2 # # the iteration num of molecule embedding
fingerprint_dim: 150
pro_gat_dim: 64
pro_seq_dim: 512