-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathspaces_utils.py
142 lines (108 loc) · 3.97 KB
/
spaces_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""Utility functions for spaces."""
import torch
import numpy as np
from typing import Callable
def spherical_to_cartesian(r, phi):
"""Convert spherical coordinates to cartesian coordinates."""
must_convert_to_torch = False
if isinstance(phi, np.ndarray):
must_convert_to_torch = True
phi = torch.Tensor(phi)
if isinstance(r, (int, float)):
r = torch.ones((len(phi))) * r
must_flatten = False
if len(phi.shape) == 1:
phi = phi.reshape(1, -1)
must_flatten = True
a = torch.cat((torch.ones((len(phi), 1), device=phi.device) * 2 * np.pi, phi), 1)
si = torch.sin(a)
si[:, 0] = 1
si = torch.cumprod(si, dim=1)
co = torch.cos(a)
co = torch.roll(co, -1, dims=1)
result = si * co * r.unsqueeze(-1)
if must_flatten:
result = result[0]
if must_convert_to_torch:
result = result.numpy()
return result
def cartesian_to_spherical(x):
"""Convert cartesian to spherical coordinates."""
must_convert_to_torch = False
if isinstance(x, np.ndarray):
must_convert_to_torch = True
x = torch.Tensor(x)
must_flatten = False
if len(x.shape) == 1:
x = x.reshape(1, -1, 1)
must_flatten = True
T = np.triu(np.ones((x.shape[1], x.shape[1])))
T = torch.Tensor(T).to(x.device)
rs = torch.matmul(T, (x.unsqueeze(-1) ** 2)).reshape(x.shape)
rs = torch.sqrt(rs)
rs[rs == 0] = 1
phi = torch.acos(torch.clamp(x / rs, -1, 1))[:, :-1]
# if x.shape[-1] > 2:
phi[:, -1] = phi[:, -1] + (2 * np.pi - 2 * phi[:, -1]) * (x[:, -1] <= 0).float()
rs = rs[:, 0]
if must_convert_to_torch:
rs = rs.numpy()
phi = phi.numpy()
if must_flatten:
result = rs[0], phi[0]
else:
result = rs, phi
return result
def sample_generalized_normal(mean: torch.Tensor, lbd: float, p: int, shape):
"""Sample from a generalized Normal distribution.
Modified according to:
https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/GeneralizedNormal
Args:
mean: Mean of the distribution.
lbd: Parameter controlling the standard deviation of the distribution.
p: Exponent of the distribution.
shape: Shape of the samples to generate.
"""
assert isinstance(lbd, float)
ipower = 1.0 / p
gamma_dist = torch.distributions.Gamma(ipower, 1.0)
gamma_sample = gamma_dist.rsample(shape)
# could speed up operations, but doesnt....
# gamma_sample = torch._standard_gamma(torch.ones(shape) * ipower)
binary_sample = torch.randint(low=0, high=2, size=shape, dtype=mean.dtype) * 2 - 1
sampled = binary_sample * torch.pow(torch.abs(gamma_sample), ipower)
return mean + lbd * sampled.to(mean.device)
def truncated_rejection_resampling(
sampler_fn: Callable,
min_: float,
max_: float,
size: int,
n: int,
buffer_size_factor: int = 1,
device: str = "cpu",
):
"""
Args:
sampler_fn:
min_: Min value of the support.
max_: Max value of the support.
size: Number of samples to generate.
n: Dimensionality of the samples.
buffer_size_factor: How many more samples to generate
first to select the feasible ones and samples from them.
device: Torch device.
"""
result = torch.ones((size, n), device=device) * np.nan
finished_mask = ~torch.isnan(result)
while torch.sum(finished_mask).item() < n * size:
# get samples from sampler_fn w/o truncation
buffer = sampler_fn(size * buffer_size_factor)
buffer = buffer.view(buffer_size_factor, size, n)
# check which samples are within the feasible set
buffer_mask = (buffer >= min_) & (buffer <= max_)
# calculate how many samples to use
for i in range(buffer_size_factor):
copy_mask = buffer_mask[i] & (~finished_mask)
result[copy_mask] = buffer[i][copy_mask]
finished_mask[copy_mask] = True
return result