-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy paththreedident_dataset.py
190 lines (155 loc) · 6.55 KB
/
threedident_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torchvision
import torch.utils.data
import numpy as np
import os
import sys
import faiss
from latent_spaces import LatentSpace
from typing import Callable, Optional
class ThreeDIdentDataset(torch.utils.data.Dataset):
"""
Samples latents according to a marginal and conditional distribution and then finds
the closest latent representation in a previously rendered dataset and returns
that latent and the according rendering.
Args:
root: Path to root folder of the dataset.
latent_space: Space to sample the negative samples and positive pairs of latents from.
transform: Transformation to apply to the images.
approximate_mode: Use a faster approximate mode for the NN matching of the latents.
use_gpu: Use the GPU for FAISS NN matching.
loader: How to load the images.
latent_dimensions_to_use: Which of the latent dimensions should be returned. None for all.
"""
def __init__(
self,
root: str,
latent_space: LatentSpace,
transform: Optional[Callable] = None,
approximate_mode: Optional[bool] = False,
use_gpu: Optional[bool] = False,
loader: Optional[Callable] = torchvision.datasets.folder.pil_loader,
latent_dimensions_to_use=None,
):
super(ThreeDIdentDataset, self).__init__()
self.root = root
self.latents = np.load(os.path.join(root, "raw_latents.npy"))
self.unfiltered_latents = self.latents
if latent_dimensions_to_use is not None:
self.latents = np.ascontiguousarray(
self.latents[:, latent_dimensions_to_use]
)
self.latent_space = latent_space
dummy_sample = latent_space.sample_marginal(size=1, device="cpu")
assert (
dummy_sample.shape[1] == self.latents.shape[1]
), f"Shapes do not match, i.e. {dummy_sample.shape} vs. {self.latents.shape}"
if transform is None:
transform = lambda x: x
self.transform = transform
max_length = int(np.ceil(np.log10(len(self.latents))))
self.image_paths = [
os.path.join(root, "images", f"{str(i).zfill(max_length)}.png")
for i in range(self.latents.shape[0])
]
self.loader = loader
if approximate_mode:
self._index = faiss.index_factory(
self.latents.shape[1], "IVF1024_HNSW32,Flat"
)
self._index.efSearch = 8
self._index.nprobe = 10
else:
self._index = faiss.IndexFlatL2(self.latents.shape[1])
if use_gpu:
# make it an IVF GPU index
self._index_cpu = self._index
self._index = faiss.index_cpu_to_gpu(
faiss.StandardGpuResources(), 0, self._index_cpu
)
if approximate_mode:
self._index.train(self.latents)
self._index.add(self.latents)
def __len__(self) -> int:
return sys.maxsize
def __repr__(self) -> str:
head = "Dataset " + self.__class__.__name__
body = ["Number of datapoints: {}".format(len(self.latents))]
if self.root is not None:
body.append("Root location: {}".format(self.root))
body += self.extra_repr().splitlines()
if hasattr(self, "transforms") and self.transforms is not None:
body += [repr(self.transforms)]
lines = [head] + [" " * self._repr_indent + line for line in body]
return "\n".join(lines)
def __getitem__(self, item):
del item
# at first sample z, z~
# then map them to the closes grid point for which we have images
z = self.latent_space.sample_marginal(size=1, device="cpu")
z_tilde = self.latent_space.sample_conditional(z, size=1, device="cpu")
distance_z, index_z = self._index.search(z.numpy(), 1)
distance_z_tilde, index_z_tilde = self._index.search(z_tilde.numpy(), 2)
index_z = index_z[0, 0]
# don't use the same sample for z, z~
if index_z_tilde[0, 0] != index_z:
index_z_tilde = index_z_tilde[0, 0]
else:
index_z_tilde = index_z_tilde[0, 1]
z = self.latents[index_z]
z_tilde = self.latents[index_z_tilde]
path_z = self.image_paths[index_z]
path_z_tilde = self.image_paths[index_z_tilde]
x, x_tilde = self.transform(self.loader(path_z)), self.transform(
self.loader(path_z_tilde)
)
return (z.flatten(), z_tilde.flatten()), (x, x_tilde)
class SequentialThreeDIdentDataset(torch.utils.data.Dataset):
"""
Sequentially load all samples in the 3DIdent dataset.
Args:
root: Path to root folder of the dataset.
transform: Transformation to apply to the images.
loader: How to load the images.
latent_dimensions_to_use: Which of the latent dimensions should be returned. None for all.
"""
def __init__(
self,
root: str,
transform: Optional[Callable] = None,
loader: Optional[Callable] = torchvision.datasets.folder.pil_loader,
latent_dimensions_to_use=None,
):
super(SequentialThreeDIdentDataset, self).__init__()
self.root = root
self.latents = np.load(os.path.join(root, "raw_latents.npy"))
self.unfiltered_latents = self.latents
if latent_dimensions_to_use is not None:
self.latents = np.ascontiguousarray(
self.latents[:, latent_dimensions_to_use]
)
if transform is None:
transform = lambda x: x
self.transform = transform
max_length = int(np.ceil(np.log10(len(self.latents))))
self.image_paths = [
os.path.join(root, "images", f"{str(i).zfill(max_length)}.png")
for i in range(self.latents.shape[0])
]
self.loader = loader
def __len__(self) -> int:
return len(self.latents)
def __repr__(self) -> str:
head = "Dataset " + self.__class__.__name__
body = ["Number of datapoints: {}".format(len(self.latents))]
if self.root is not None:
body.append("Root location: {}".format(self.root))
body += self.extra_repr().splitlines()
if hasattr(self, "transforms") and self.transforms is not None:
body += [repr(self.transforms)]
lines = [head] + [" " * self._repr_indent + line for line in body]
return "\n".join(lines)
def __getitem__(self, item):
z = self.latents[item]
path_z = self.image_paths[item]
x = self.transform(self.loader(path_z))
return z.flatten(), x