-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
91 lines (68 loc) · 2.6 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""Additional layers not included in PyTorch."""
import torch
from torch import nn
import torch.nn.modules.conv as conv
from typing import Optional
from typing_extensions import Literal
class PositionalEncoding(nn.Module):
"""Add a positional encoding as two additional channels to the data."""
def __init__(self):
super().__init__()
def forward(self, x):
pos = torch.stack(
torch.meshgrid(
torch.arange(x.shape[-2], dtype=torch.float, device=x.device),
torch.arange(x.shape[-1], dtype=torch.float, device=x.device),
),
0,
)
pos /= torch.max(pos) + 1e-12
pos = torch.repeat_interleave(pos.unsqueeze(0), len(x), 0)
return torch.cat((pos, x), 1)
class Lambda(nn.Module):
"""Apply a lambda function to the input."""
def __init__(self, f):
super().__init__()
self.f = f
def forward(self, *args, **kwargs):
return self.f(*args, **kwargs)
class Flatten(Lambda):
"""Flatten the input data after the batch dimension."""
def __init__(self):
super().__init__(lambda x: x.view(len(x), -1))
class RescaleLayer(nn.Module):
"""Normalize the data to a hypersphere with fixed/variable radius."""
def __init__(
self, init_r=1.0, fixed_r=False, mode: Optional[Literal["eq", "leq"]] = "eq"
):
super().__init__()
self.fixed_r = fixed_r
assert mode in ("leq", "eq")
self.mode = mode
if fixed_r:
self.r = torch.ones(1, requires_grad=False) * init_r
else:
self.r = nn.Parameter(torch.ones(1, requires_grad=True) * init_r)
def forward(self, x):
if self.mode == "eq":
x = x / torch.norm(x, dim=-1, keepdim=True)
x = x * self.r.to(x.device)
elif self.mode == "leq":
norm = torch.norm(x, dim=-1, keepdim=True)
x[norm > self.r] /= torch.norm(x, dim=-1, keepdim=True) / self.r
return x
class SoftclipLayer(nn.Module):
"""Normalize the data to a hyperrectangle with fixed/learnable size."""
def __init__(self, n, init_abs_bound=1.0, fixed_abs_bound=True):
super().__init__()
self.fixed_abs_bound = fixed_abs_bound
if fixed_abs_bound:
self.max_abs_bound = torch.ones(n, requires_grad=False) * init_abs_bound
else:
self.max_abs_bound = nn.Parameter(
torch.ones(n, requires_grad=True) * init_abs_bound
)
def forward(self, x):
x = torch.sigmoid(x)
x = x * self.max_abs_bound.to(x.device).unsqueeze(0)
return x