-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathagent_motion_config.yaml
72 lines (62 loc) · 1.68 KB
/
agent_motion_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Config format schema number
format_version: 4
###################
## Model options
model_params:
model_architecture: 'resnet34'
history_num_frames: 10
history_step_size: 1
history_delta_time: 0.1
future_num_frames: 50
future_step_size: 1
future_delta_time: 0.1
epochs: 3
lr: 0.001
weight_decay: 0.0000005
gradient_clip_val: 1
weight_path: "/data/pretrained_weights/model_multi_update_lyft_public.pth"
train: True
predict: False
###################
## Input raster parameters
raster_params:
# raster image size [pixels]
raster_size:
- 224
- 224
# raster's spatial resolution [meters per pixel]: the size in the real world one pixel corresponds to.
pixel_size:
- 0.5
- 0.5
# From 0 to 1 per axis, [0.5,0.5] would show the ego centered in the image.
ego_center:
- 0.25
- 0.5
map_type: "py_semantic"
# the keys are relative to the dataset environment variable
satellite_map_key: "aerial_map/aerial_map.png"
semantic_map_key: "semantic_map/semantic_map.pb"
dataset_meta_key: "meta.json"
# e.g. 0.0 include every obstacle, 0.5 show those obstacles with >0.5 probability of being
# one of the classes we care about (cars, bikes, peds, etc.), >=1.0 filter all other agents.
filter_agents_threshold: 0.5
###################
## Data loader options
train_data_loader:
key: "scenes/train.zarr"
batch_size: 16
shuffle: True
num_workers: 16
training_percentage: 0.25
val_data_loader:
key: "scenes/validate.zarr"
batch_size: 16
shuffle: False
num_workers: 16
validation_percentage: 0.2
###################
## Train params
train_params:
checkpoint_every_n_steps: 10000
max_num_steps: 101
eval_every_n_steps: 10000