-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathk_means.py
106 lines (82 loc) · 3.11 KB
/
k_means.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# -*- coding: utf-8 -*-
"""
Created on 2020-05-07 11:57:29
@Author: xxx
@Version : 1
"""
from typing import Tuple
import cv2
import numpy as np
from collections import Counter
def difference(array: np.ndarray):
x = []
for i in range(len(array) - 1):
x.append(array[i + 1] - array[i])
return np.array(x)
def find_peek(array: np.ndarray):
peek = difference(difference(array))
# print(peek)
peek_pos = np.argmax(peek) + 2
return peek_pos
def k_means(points: np.ndarray):
"""返回一个数组经kmeans分类后的k值以及标签,k值由计算拐点给出
Args:
points (np.ndarray): 需分类数据
Returns:
Tuple[int, np.ndarry]: k值以及标签数组
"""
# Define criteria = ( type, max_iter = 10 , epsilon = 1.0 )
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
# Set flags (Just to avoid line break in the code)
flags = cv2.KMEANS_RANDOM_CENTERS
length = []
max_k = min(10, points.shape[0])
for k in range(2, max_k + 1):
avg = 0
for i in range(5):
compactness, _, _ = cv2.kmeans(
points, k, None, criteria, 10, flags)
avg += compactness
avg /= 5
length.append(avg)
peek_pos = find_peek(length)
k = peek_pos + 2
# print(k)
return k, cv2.kmeans(points, k, None, criteria, 10, flags)[1] # labels
def get_group_center(points1: np.ndarray, points2: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""输入两个相对应的点对数组,返回经kmeans优化后的两个数组
Args:
points1 (np.ndarray): 数组一
points2 (np.ndarray): 数组二
Returns:
Tuple[np.ndarray, np.ndarray]: 两数组
"""
k, labels = k_means(points1)
labels = labels.flatten()
labels_dict = Counter(labels)
print("聚类结果:",k ,labels_dict)
selected_centers1 = []
selected_centers2 = []
for i in range(k):
center1 = np.mean(points1[labels == i], axis=0)
center2 = np.mean(points2[labels == i], axis=0)
# center1 = points1[labels == i][0]
# center2 = points2[labels == i][0]
selected_centers1.append(center1)
selected_centers2.append(center2)
selected_centers1, selected_centers2 = np.array(
selected_centers1), np.array(selected_centers2)
# return selected_centers1, selected_centers2
# return np.append(selected_centers1, points1, axis=0), np.append(selected_centers2, points2, axis=0)
need_label = max(labels_dict, key=labels_dict.get)
print("need: ",need_label)
points1 = points1[np.where(labels == need_label)]
points2 = points2[np.where(labels == need_label)]
return points1, points2
def main():
x = np.array([[1, 1], [4, 2], [2, 2], [8, 80],[1, 1], [4, 2], [2, 2], [8, 80],[1, 1], [4, 2], [2, 2], [8, 80],[1, 1], [4, 2], [2, 2], [8, 80]], dtype=np.float32)
y = np.array([[1, 1], [4, 2], [2, 2], [8, 80],[1, 1], [4, 2], [2, 2], [8, 80],[1, 1], [4, 2], [2, 2], [8, 80],[1, 1], [4, 2], [2, 2], [8, 80]], dtype=np.float32)
print(get_group_center(x, y))
pass
if __name__ == "__main__":
main()