-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
308 lines (248 loc) · 11.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
from dotenv import load_dotenv
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, session
import exif
from PIL import Image
from io import BytesIO
import pandas as pd
import requests
from openai import OpenAI
import boto3
from botocore.exceptions import NoCredentialsError
load_dotenv()
# Access your environment variable
api_key = os.getenv('OPENAI_API_KEY')
app_secret_key = os.getenv('app_secret_key')
rekognition = boto3.client('rekognition')
client = OpenAI(api_key=api_key)
app = Flask(__name__)
app.secret_key = app_secret_key
ALLOWED_EXTENSIONS = {'jpg', 'jpeg'}
UPLOAD_FOLDER = 'uploads'
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload_photo():
if 'photo' not in request.files:
return redirect(request.url)
photo = request.files['photo']
if photo.filename == '':
return redirect(request.url)
if photo and allowed_file(photo.filename):
photo_data = photo.read()
photo_stream = BytesIO(photo_data)
photo_stream.seek(0)
# Save the uploaded photo
filename = photo.filename
photo_path = os.path.join(UPLOAD_FOLDER, filename)
with open(photo_path, 'wb') as file:
file.write(photo_data)
return redirect(url_for('display_photo', filename=filename))
return redirect(request.url)
@app.route('/photos/<path:filename>')
def display_photo(filename):
photo_path = os.path.join(UPLOAD_FOLDER, filename)
try:
with open(photo_path, 'rb') as file:
photo_data = file.read()
session['photo_filename'] = filename
# Read metadata from the photo
metadata = exif.Image(photo_data)
metadata_dict = {}
for attr in dir(metadata):
if not attr.startswith('_'):
try:
metadata_dict[attr] = getattr(metadata, attr)
except (AttributeError, NotImplementedError):
pass
df = pd.DataFrame.from_dict(
metadata_dict, orient='index', columns=['Value'])
columns_to_keep = [
'gps_altitude',
'gps_datestamp',
'gps_img_direction',
'gps_latitude',
'gps_latitude_ref',
'gps_longitude',
'gps_longitude_ref',
'lens_make',
'lens_model'
]
missing_columns = [
col for col in columns_to_keep if col not in df.index]
location = None
interesting_fact = None
if not missing_columns:
latitude = df.loc['gps_latitude', 'Value']
latitude_ref = df.loc['gps_latitude_ref', 'Value']
longitude = df.loc['gps_longitude', 'Value']
longitude_ref = df.loc['gps_longitude_ref', 'Value']
lat_deg, lat_min, lat_sec = latitude
lon_deg, lon_min, lon_sec = longitude
lat_decimal = lat_deg + (lat_min / 60) + (lat_sec / 3600)
lon_decimal = lon_deg + (lon_min / 60) + (lon_sec / 3600)
if latitude_ref == 'S':
lat_decimal = -lat_decimal
if longitude_ref == 'W':
lon_decimal = -lon_decimal
url = f'https://nominatim.openstreetmap.org/reverse?format=jsonv2&lat={lat_decimal}&lon={lon_decimal}'
response = requests.get(url)
location_data = response.json()
# Extract the desired location components
address = location_data.get('address', {})
road = address.get('road', '')
suburb = address.get('suburb', '')
city = address.get('city', '')
country = address.get('country', '')
# Format the location string
location = f"{road}, {suburb}, {city}, {country}"
# Generate interesting fact using LLM
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "system",
"content": "You are an AI assistant that generates interesting facts or informative phrases about locations based on given information."
},
{
"role": "user",
"content": f"Based on the location {location}, generate an interesting fact or informative phrase. Do not start with 'Additional Interesting Fact: ...'. Just state the fact "
}
],
temperature=0.7,
max_tokens=150,
n=1,
stop=None,
)
interesting_fact = response.choices[0].message.content.strip()
if location is None:
location = 'Unknown Location'
# Use AWS Rekognition to analyze the photo
try:
response = rekognition.detect_labels(Image={'Bytes': photo_data})
labels = [label['Name'] for label in response['Labels']]
landmarks = [landmark['Name']
for landmark in response.get('Landmarks', [])]
# Get the most confident label as the main subject
if labels:
main_subject = labels[0]
else:
main_subject = 'Unknown'
# Generate a brief caption based on the detected objects and scenes
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "system",
"content": "You are an AI assistant that generates brief captions for images based on detected objects and scenes."
},
{
"role": "user",
"content": f"Based on the following detected objects and scenes, generate a brief caption for the image:\n\nDetected Objects and Scenes: {', '.join(labels)}"
}
],
temperature=0.7,
max_tokens=50,
n=1,
stop=None,
)
rekognition_caption = response.choices[0].message.content.strip()
# Generate caption using LLM
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "system",
"content": "You are an AI assistant that generates captions for images based on location information, detected objects, and landmarks."
},
{
"role": "user",
"content": f"Based on the following information, generate a brief and punny caption (ho hashtags, but emohis are ok) suitable for a 36-year-old male Instagram user for the uploaded image:\n\nLocation: {location}\nInteresting Fact: {interesting_fact}\nDetected Objects: {', '.join(labels)}\nLandmarks: {', '.join(landmarks)}"
}
],
temperature=0.7,
max_tokens=150,
n=1,
stop=None,
)
caption = response.choices[0].message.content.strip()
# Generate additional interesting fact using LLM
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "system",
"content": "You are an AI assistant that generates interesting facts based on location information, detected objects, and landmarks."
},
{
"role": "user",
"content": f"Based on the following information, generate an additional interesting fact (but do not state it is an additioan intersting) or informative phrase related to the uploaded image:\n\nLocation: {location}\nInteresting Fact: {interesting_fact}\nDetected Objects: {', '.join(labels)}\nLandmarks: {', '.join(landmarks)}"
}
],
temperature=0.7,
max_tokens=100,
n=1,
stop=None,
)
additional_fact = response.choices[0].message.content.strip()
except NoCredentialsError:
rekognition_caption = "Caption generation failed due to missing AWS credentials."
caption = "Caption generation failed due to missing AWS credentials."
additional_fact = "Additional fact generation failed due to missing AWS credentials."
main_subject = "Unknown"
datestamp = df.loc['gps_datestamp',
'Value'] if 'gps_datestamp' in df.index else 'Unknown'
lens_make = df.loc['lens_make',
'Value'] if 'lens_make' in df.index else 'Unknown'
timestamp = datestamp.replace(
':', '-') if datestamp != 'Unknown' else 'Unknown'
caption = request.args.get('caption', caption)
return render_template('display_photo.html', filename=filename, location=location, timestamp=timestamp, lens_make=lens_make, interesting_fact=interesting_fact, caption=caption, additional_fact=additional_fact, rekognition_caption=rekognition_caption, main_subject=main_subject)
except Exception as e:
return str(e), 404
@app.route('/regenerate_caption/<path:filename>', methods=['POST'])
def regenerate_caption(filename):
photo_filename = session.get('photo_filename')
location = request.form.get('location')
interesting_fact = request.form.get('interesting_fact')
if photo_filename:
try:
response = rekognition.detect_labels(Image={'Bytes': photo_filename})
labels = [label['Name'] for label in response['Labels']]
landmarks = [landmark['Name']
for landmark in response.get('Landmarks', [])]
# Generate caption using LLM
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{
"role": "system",
"content": "You are an AI assistant that generates captions for images based on location information, detected objects, and landmarks."
},
{
"role": "user",
"content": f"Based on the following information, generate a brief and punny caption suitable for a 36-year-old male Instagram user for the uploaded image:\n\nLocation: {location}\nInteresting Fact: {interesting_fact}\nDetected Objects: {', '.join(labels)}\nLandmarks: {', '.join(landmarks)}"
}
],
temperature=0.7,
max_tokens=100,
n=1,
stop=None,
)
caption = response.choices[0].message.content.strip()
except NoCredentialsError:
caption = "Caption generation failed due to missing AWS credentials."
return redirect(url_for('display_photo', filename=filename, caption=caption))
else:
return "No photo data found in the session.", 400
@app.route('/uploads/<filename>')
def uploaded_file(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
if __name__ == '__main__':
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
app.run(debug=True)