-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdxbc_input_layout_bytecode_generator.c
459 lines (424 loc) · 18.5 KB
/
dxbc_input_layout_bytecode_generator.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
// Generates DXBC bytecode for use with D3DDevice.CreateInputLayout. So that you don't need to keep an actual shader around.
//
// CreateInputLayout does actually validate everything about the shader, not just the input layour part.
// So this function generates output that's byte-for-byte identical with D3DCompile.
//
// The bytecode format and checksum algorithm was reverse engineered with the help of Wine source.
#include <d3d11.h> // only for D3D11_INPUT_ELEMENT_DESC
#include <string.h> // memcpy, memset, strcmp, strlen
int generate_bytecode_for_input_layout(unsigned char output[1024], const D3D11_INPUT_ELEMENT_DESC inputs[], int num_inputs)
{
struct
{
char magic[4];
char md5[16];
short major_version;
short minor_version;
int file_size;
int number_of_chunks;
int rdef_chunk_offset;
int isgn_chunk_offset;
int osgn_chunk_offset;
int shdr_chunk_offset;
int stat_chunk_offset;
char rdef_chunk_header[4];
int rdef_chunk_size;
int number_of_constant_buffers;
int offset_of_constant_buffers;
int number_of_resource_bindings;
int offset_of_resource_bindings;
char rdef_minor_version;
char rdef_major_version;
short shader_type;
int compile_flags;
int offset_of_compiler_string;
char compiler_string[40];
char isgn_chunk_header[4];
int isgn_chunk_size;
int number_of_elements;
int always_8;
}
header =
{
.magic = { 'D', 'X', 'B', 'C' },
.md5 = { 0 }, // filled in later
.major_version = 1,
.minor_version = 0,
.file_size = 0, // filled in later
.number_of_chunks = 5,
.rdef_chunk_offset = 52,
.isgn_chunk_offset = 128,
.osgn_chunk_offset = 0, // filled in later
.shdr_chunk_offset = 0, // filled in later
.stat_chunk_offset = 0, // filled in later
.rdef_chunk_header = { 'R', 'D', 'E', 'F' },
.rdef_chunk_size = 68,
.number_of_constant_buffers = 0,
.offset_of_constant_buffers = 0,
.number_of_resource_bindings = 0,
.offset_of_resource_bindings = 28,
.rdef_major_version = 4,
.rdef_minor_version = 0,
.shader_type = 0xFFFE, // vertex shader
.compile_flags = 0x104, // SKIP_OPTIMIZATION | NO_PRESHADER
.offset_of_compiler_string = 28,
.compiler_string = "Microsoft (R) HLSL Shader Compiler 10.1",
.isgn_chunk_header = { 'I', 'S', 'G', 'N' },
.isgn_chunk_size = 0, // filled in later
.number_of_elements = num_inputs,
.always_8 = 8, // I have no idea what this is
};
static const unsigned char FOOTER[160] =
{
'O', 'S', 'G', 'N', // OSGN chunk header
8, 0, 0, 0, // OSGN chunk size
0, 0, 0, 0, // number of elements
8, 0, 0, 0, // I don't know what this is but it's always 8
'S', 'H', 'D', 'R', // SHDR chunk header
12, 0, 0, 0, // SHDR chunk size
0x40, // major and minor version
0, // I don't know what this is
1, 0, // program type: 1 = vertex shader
3, 0, 0, 0, // number of instructions?
0x3E, 0x00, 0x00, 0x01, // probably just a ret instruction
'S', 'T', 'A', 'T', // STAT chunk header
116, 0, 0, 0, // STAT chunk size
1, 0, 0, 0, // number of instruction and various other statistics that don't matter
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
// per-input element data
struct
{
int semantic_offset; // offset from ISGN chunk data where semantic name is
int semantic_index;
int semantic_value_type; // always 0 for inputs
int type; // uint = 1, int = 2, float = 3
int register_index; // 0, 1, 2, 3... per input
unsigned char components; // X|Y|Z|W 4 bit mask float4 = 0b1111, float3 = 0b0111
unsigned char components_used; // what is actually used - always 0 for us
short padding;
} element;
// semantic name block goes after all the elements
char* start_of_elements = (char*)output + sizeof header;
char* start_of_isgn_data = start_of_elements - 8;
char* semantics0 = start_of_elements + num_inputs * sizeof element;
char* semantics1 = semantics0;
// append all input elements
for (int i = 0; i < num_inputs; i++)
{
memset(&element, 0, sizeof element);
element.semantic_index = inputs[i].SemanticIndex;
element.register_index = i;
// either reuse an existing semantic name or append a new one
for (char* semantic = semantics0;;)
{
if (semantic == semantics1 || strcmp(inputs[i].SemanticName, semantic) == 0)
{
element.semantic_offset = (int)(semantic - start_of_isgn_data);
if (semantic == semantics1)
{
strcpy(semantic, inputs[i].SemanticName);
semantics1 += strlen(semantic) + 1;
}
break;
}
semantic += strlen(semantic) + 1;
}
// translate the format into a type and component mask
enum
{
UINT = 1,
INT = 2,
FLOAT = 3,
X = 0b0001,
XY = 0b0011,
XYZ = 0b0111,
XYZW = 0b1111,
};
switch (inputs[i].Format)
{
case DXGI_FORMAT_R32G32B32A32_FLOAT: element.type = FLOAT; element.components = XYZW; break;
case DXGI_FORMAT_R32G32B32A32_SINT: element.type = INT; element.components = XYZW; break;
case DXGI_FORMAT_R32G32B32A32_UINT: element.type = UINT; element.components = XYZW; break;
case DXGI_FORMAT_R32G32B32_FLOAT: element.type = FLOAT; element.components = XYZ; break;
case DXGI_FORMAT_R32G32B32_SINT: element.type = INT; element.components = XYZ; break;
case DXGI_FORMAT_R32G32B32_UINT: element.type = UINT; element.components = XYZ; break;
case DXGI_FORMAT_R32G32_FLOAT: element.type = FLOAT; element.components = XY; break;
case DXGI_FORMAT_R32G32_SINT: element.type = INT; element.components = XY; break;
case DXGI_FORMAT_R32G32_UINT: element.type = UINT; element.components = XY; break;
case DXGI_FORMAT_R32_FLOAT: element.type = FLOAT; element.components = X; break;
case DXGI_FORMAT_R32_SINT: element.type = INT; element.components = X; break;
case DXGI_FORMAT_R32_UINT: element.type = UINT; element.components = X; break;
case DXGI_FORMAT_R16G16B16A16_FLOAT: element.type = FLOAT; element.components = XYZW; break;
case DXGI_FORMAT_R16G16B16A16_SINT: element.type = INT; element.components = XYZW; break;
case DXGI_FORMAT_R16G16B16A16_UINT: element.type = UINT; element.components = XYZW; break;
case DXGI_FORMAT_R16G16B16A16_SNORM: element.type = FLOAT; element.components = XYZW; break;
case DXGI_FORMAT_R16G16B16A16_UNORM: element.type = FLOAT; element.components = XYZW; break;
case DXGI_FORMAT_R16G16_FLOAT: element.type = FLOAT; element.components = XY; break;
case DXGI_FORMAT_R16G16_SINT: element.type = INT; element.components = XY; break;
case DXGI_FORMAT_R16G16_UINT: element.type = UINT; element.components = XY; break;
case DXGI_FORMAT_R16G16_SNORM: element.type = FLOAT; element.components = XY; break;
case DXGI_FORMAT_R16G16_UNORM: element.type = FLOAT; element.components = XY; break;
case DXGI_FORMAT_R16_FLOAT: element.type = FLOAT; element.components = X; break;
case DXGI_FORMAT_R16_SINT: element.type = INT; element.components = X; break;
case DXGI_FORMAT_R16_UINT: element.type = UINT; element.components = X; break;
case DXGI_FORMAT_R16_SNORM: element.type = FLOAT; element.components = X; break;
case DXGI_FORMAT_R8G8B8A8_SINT: element.type = INT; element.components = XYZW; break;
case DXGI_FORMAT_R8G8B8A8_UINT: element.type = UINT; element.components = XYZW; break;
case DXGI_FORMAT_R8G8B8A8_SNORM: element.type = FLOAT; element.components = XYZW; break;
case DXGI_FORMAT_R8G8B8A8_UNORM: element.type = FLOAT; element.components = XYZW; break;
case DXGI_FORMAT_R8G8_SINT: element.type = INT; element.components = XY; break;
case DXGI_FORMAT_R8G8_UINT: element.type = UINT; element.components = XY; break;
case DXGI_FORMAT_R8G8_SNORM: element.type = FLOAT; element.components = XY; break;
case DXGI_FORMAT_R8G8_UNORM: element.type = FLOAT; element.components = XY; break;
case DXGI_FORMAT_R8_SINT: element.type = INT; element.components = X; break;
case DXGI_FORMAT_R8_UINT: element.type = UINT; element.components = X; break;
case DXGI_FORMAT_R8_SNORM: element.type = FLOAT; element.components = X; break;
case DXGI_FORMAT_R8_UNORM: element.type = FLOAT; element.components = X; break;
case DXGI_FORMAT_R10G10B10A2_UNORM: element.type = FLOAT; element.components = XYZ; break;
case DXGI_FORMAT_R10G10B10A2_UINT: element.type = UINT; element.components = XYZ; break;
case DXGI_FORMAT_R11G11B10_FLOAT: element.type = FLOAT; element.components = XYZ; break;
case DXGI_FORMAT_B5G6R5_UNORM: element.type = FLOAT; element.components = XYZ; break;
case DXGI_FORMAT_B5G5R5A1_UNORM: element.type = FLOAT; element.components = XYZW; break;
case DXGI_FORMAT_B8G8R8X8_UNORM: element.type = FLOAT; element.components = XYZ; break;
}
// copy to correct place
memcpy(start_of_elements + i * sizeof element, &element, sizeof element);
}
// semantics strings are padded with 0xAB until 4 byte aligned
while ((semantics1 - semantics0) % 4)
*semantics1++ = '\xAB';
// fill out the rest of the header
char* end_of_isgn_data = semantics1;
header.file_size = sizeof header + (int)(end_of_isgn_data - start_of_elements) + sizeof FOOTER;
header.osgn_chunk_offset = (int)(end_of_isgn_data - (char*)output);
header.shdr_chunk_offset = header.osgn_chunk_offset + 16;
header.stat_chunk_offset = header.shdr_chunk_offset + 20;
header.isgn_chunk_size = (int)(end_of_isgn_data - start_of_isgn_data);
// sandwich between header and footer
memcpy(output, &header, sizeof header);
memcpy(end_of_isgn_data, FOOTER, sizeof FOOTER);
// calculate modified MD5 checksum
unsigned md5[4] = { 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476 };
unsigned char* data = output + 20;
int data_size = header.file_size - 20;
for (int size = data_size; size >= -8; size -= 64, data += 64)
{
union { unsigned u32[16]; unsigned char u8[64]; } input = { 0 };
if (size >= 64)
memcpy(input.u8, data, 64);
else if (size >= 56)
input.u8[size] = 0x80; // end of footer is all 0 so don't need to copy anything
else
{
input.u32[0] = (data_size * 8);
input.u32[15] = (data_size * 2) | 1;
if (size >= 0)
input.u8[4 + size] = 0x80;
}
unsigned a = md5[0];
unsigned b = md5[1];
unsigned c = md5[2];
unsigned d = md5[3];
#define MD5_F1(x, y, z) ((x & y) | (~x & z))
#define MD5_F2(x, y, z) ((x & z) | (y & ~z))
#define MD5_F3(x, y, z) (x ^ y ^ z)
#define MD5_F4(x, y, z) (y ^ (x | ~z))
#define MD5_STEP(f, w, x, y, z, index, a, s) (w += f(x, y, z) + input.u32[index] + a, w = w << s | w >> (32 - s), w += x)
MD5_STEP(MD5_F1, a, b, c, d, 0, 0xD76AA478, 7);
MD5_STEP(MD5_F1, d, a, b, c, 1, 0xE8C7B756, 12);
MD5_STEP(MD5_F1, c, d, a, b, 2, 0x242070DB, 17);
MD5_STEP(MD5_F1, b, c, d, a, 3, 0xC1BDCEEE, 22);
MD5_STEP(MD5_F1, a, b, c, d, 4, 0xF57C0FAF, 7);
MD5_STEP(MD5_F1, d, a, b, c, 5, 0x4787C62A, 12);
MD5_STEP(MD5_F1, c, d, a, b, 6, 0xA8304613, 17);
MD5_STEP(MD5_F1, b, c, d, a, 7, 0xFD469501, 22);
MD5_STEP(MD5_F1, a, b, c, d, 8, 0x698098D8, 7);
MD5_STEP(MD5_F1, d, a, b, c, 9, 0x8B44F7AF, 12);
MD5_STEP(MD5_F1, c, d, a, b, 10, 0xFFFF5BB1, 17);
MD5_STEP(MD5_F1, b, c, d, a, 11, 0x895CD7BE, 22);
MD5_STEP(MD5_F1, a, b, c, d, 12, 0x6B901122, 7);
MD5_STEP(MD5_F1, d, a, b, c, 13, 0xFD987193, 12);
MD5_STEP(MD5_F1, c, d, a, b, 14, 0xA679438E, 17);
MD5_STEP(MD5_F1, b, c, d, a, 15, 0x49B40821, 22);
MD5_STEP(MD5_F2, a, b, c, d, 1, 0xF61E2562, 5);
MD5_STEP(MD5_F2, d, a, b, c, 6, 0xC040B340, 9);
MD5_STEP(MD5_F2, c, d, a, b, 11, 0x265E5A51, 14);
MD5_STEP(MD5_F2, b, c, d, a, 0, 0xE9B6C7AA, 20);
MD5_STEP(MD5_F2, a, b, c, d, 5, 0xD62F105D, 5);
MD5_STEP(MD5_F2, d, a, b, c, 10, 0x02441453, 9);
MD5_STEP(MD5_F2, c, d, a, b, 15, 0xD8A1E681, 14);
MD5_STEP(MD5_F2, b, c, d, a, 4, 0xE7D3FBC8, 20);
MD5_STEP(MD5_F2, a, b, c, d, 9, 0x21E1CDE6, 5);
MD5_STEP(MD5_F2, d, a, b, c, 14, 0xC33707D6, 9);
MD5_STEP(MD5_F2, c, d, a, b, 3, 0xF4D50D87, 14);
MD5_STEP(MD5_F2, b, c, d, a, 8, 0x455A14ED, 20);
MD5_STEP(MD5_F2, a, b, c, d, 13, 0xA9E3E905, 5);
MD5_STEP(MD5_F2, d, a, b, c, 2, 0xFCEFA3F8, 9);
MD5_STEP(MD5_F2, c, d, a, b, 7, 0x676F02D9, 14);
MD5_STEP(MD5_F2, b, c, d, a, 12, 0x8D2A4C8A, 20);
MD5_STEP(MD5_F3, a, b, c, d, 5, 0xFFFA3942, 4);
MD5_STEP(MD5_F3, d, a, b, c, 8, 0x8771F681, 11);
MD5_STEP(MD5_F3, c, d, a, b, 11, 0x6D9D6122, 16);
MD5_STEP(MD5_F3, b, c, d, a, 14, 0xFDE5380C, 23);
MD5_STEP(MD5_F3, a, b, c, d, 1, 0xA4BEEA44, 4);
MD5_STEP(MD5_F3, d, a, b, c, 4, 0x4BDECFA9, 11);
MD5_STEP(MD5_F3, c, d, a, b, 7, 0xF6BB4B60, 16);
MD5_STEP(MD5_F3, b, c, d, a, 10, 0xBEBFBC70, 23);
MD5_STEP(MD5_F3, a, b, c, d, 13, 0x289B7EC6, 4);
MD5_STEP(MD5_F3, d, a, b, c, 0, 0xEAA127FA, 11);
MD5_STEP(MD5_F3, c, d, a, b, 3, 0xD4EF3085, 16);
MD5_STEP(MD5_F3, b, c, d, a, 6, 0x04881D05, 23);
MD5_STEP(MD5_F3, a, b, c, d, 9, 0xD9D4D039, 4);
MD5_STEP(MD5_F3, d, a, b, c, 12, 0xE6DB99E5, 11);
MD5_STEP(MD5_F3, c, d, a, b, 15, 0x1FA27CF8, 16);
MD5_STEP(MD5_F3, b, c, d, a, 2, 0xC4AC5665, 23);
MD5_STEP(MD5_F4, a, b, c, d, 0, 0xF4292244, 6);
MD5_STEP(MD5_F4, d, a, b, c, 7, 0x432AFF97, 10);
MD5_STEP(MD5_F4, c, d, a, b, 14, 0xAB9423A7, 15);
MD5_STEP(MD5_F4, b, c, d, a, 5, 0xFC93A039, 21);
MD5_STEP(MD5_F4, a, b, c, d, 12, 0x655B59C3, 6);
MD5_STEP(MD5_F4, d, a, b, c, 3, 0x8F0CCC92, 10);
MD5_STEP(MD5_F4, c, d, a, b, 10, 0xFFEFF47D, 15);
MD5_STEP(MD5_F4, b, c, d, a, 1, 0x85845DD1, 21);
MD5_STEP(MD5_F4, a, b, c, d, 8, 0x6FA87E4F, 6);
MD5_STEP(MD5_F4, d, a, b, c, 15, 0xFE2CE6E0, 10);
MD5_STEP(MD5_F4, c, d, a, b, 6, 0xA3014314, 15);
MD5_STEP(MD5_F4, b, c, d, a, 13, 0x4E0811A1, 21);
MD5_STEP(MD5_F4, a, b, c, d, 4, 0xF7537E82, 6);
MD5_STEP(MD5_F4, d, a, b, c, 11, 0xBD3AF235, 10);
MD5_STEP(MD5_F4, c, d, a, b, 2, 0x2AD7D2BB, 15);
MD5_STEP(MD5_F4, b, c, d, a, 9, 0xEB86D391, 21);
#undef MD5_F1
#undef MD5_F2
#undef MD5_F3
#undef MD5_F4
#undef MD5_STEP
md5[0] += a;
md5[1] += b;
md5[2] += c;
md5[3] += d;
}
// copy checksum to header
memcpy(output + 4, md5, 16);
return header.file_size;
}
// Testing
#include <d3dcompiler.h>
#include <assert.h>
#include <stdio.h>
#include <time.h>
#pragma comment(lib, "d3dcompiler.lib")
int main(void)
{
unsigned long long total_qpc_genbytecode = 0;
unsigned long long total_qpc_d3dcompile = 0;
double total_calls = 0;
static const DXGI_FORMAT FORMATS[] =
{
DXGI_FORMAT_R32G32B32A32_FLOAT,
DXGI_FORMAT_R32G32B32A32_SINT,
DXGI_FORMAT_R32G32B32A32_UINT,
DXGI_FORMAT_R32G32B32_FLOAT,
DXGI_FORMAT_R32G32B32_SINT,
DXGI_FORMAT_R32G32B32_UINT,
DXGI_FORMAT_R32G32_FLOAT,
DXGI_FORMAT_R32G32_SINT,
DXGI_FORMAT_R32G32_UINT,
DXGI_FORMAT_R32_FLOAT,
DXGI_FORMAT_R32_SINT,
DXGI_FORMAT_R32_UINT,
};
D3D11_INPUT_ELEMENT_DESC inputs[16] = { 0 }; // D3D supports max 16 input slots
for (int num_inputs = 0; num_inputs < _countof(inputs); num_inputs++)
{
LARGE_INTEGER qpf;
QueryPerformanceFrequency(&qpf);
double total_seconds_genbytecode = total_qpc_genbytecode / (double)qpf.QuadPart;
double total_seconds_d3dcompile = total_qpc_d3dcompile / (double)qpf.QuadPart;
double seconds_per_genbytecode = total_seconds_genbytecode / total_calls;
double seconds_per_d3dcompile = total_seconds_d3dcompile / total_calls;
double ratio = total_seconds_d3dcompile / total_seconds_genbytecode;
printf("%d inputs, genbytecode: %.1f us, d3dcompile: %.1f us, %.1fx faster\n", num_inputs,
seconds_per_genbytecode * 1e6, seconds_per_d3dcompile * 1e6, ratio);
long long num_permutations = 1; // pow(countof(FORMATS), num_inputs)
for (int i = 0; i < num_inputs; i++)
num_permutations *= _countof(FORMATS);
const int MAX_PERMUTATIONS = 2000; // upper bound on iterations per #inputs otherwise it grows exponentially
long long advance = (num_permutations + MAX_PERMUTATIONS - 1) / MAX_PERMUTATIONS;
for (long long permutation = 0; permutation < num_permutations; permutation += advance)
{
// you can use any sensible semantic name + index for the inputs
static const char* const SEMANTICS[] = { "XYZW", "XYZ", "XY", "X" };
long long state = permutation;
for (int i = 0; i < num_inputs; i++)
{
DXGI_FORMAT format = FORMATS[state % _countof(FORMATS)];
state /= _countof(FORMATS);
inputs[i].SemanticName = SEMANTICS[i % _countof(SEMANTICS)];
inputs[i].SemanticIndex = i / _countof(SEMANTICS);
inputs[i].Format = format;
}
LARGE_INTEGER t0, t1;
QueryPerformanceCounter(&t0);
unsigned char our_bytecode[1024];
int size_of_our_bytecode = generate_bytecode_for_input_layout(our_bytecode, inputs, num_inputs);
QueryPerformanceCounter(&t1);
total_qpc_genbytecode += t1.QuadPart - t0.QuadPart;
char shader[1024] = "";
char* cursor = shader;
cursor += sprintf(cursor, "struct Input { ");
for (int i = 0; i < num_inputs; i++)
{
const char* type = NULL;
switch (inputs[i].Format)
{
case DXGI_FORMAT_R32G32B32A32_FLOAT: type = "float4"; break;
case DXGI_FORMAT_R32G32B32A32_SINT: type = "int4"; break;
case DXGI_FORMAT_R32G32B32A32_UINT: type = "uint4"; break;
case DXGI_FORMAT_R32G32B32_FLOAT: type = "float3"; break;
case DXGI_FORMAT_R32G32B32_SINT: type = "int3"; break;
case DXGI_FORMAT_R32G32B32_UINT: type = "uint3"; break;
case DXGI_FORMAT_R32G32_FLOAT: type = "float2"; break;
case DXGI_FORMAT_R32G32_SINT: type = "int2"; break;
case DXGI_FORMAT_R32G32_UINT: type = "uint2"; break;
case DXGI_FORMAT_R32_FLOAT: type = "float"; break;
case DXGI_FORMAT_R32_SINT: type = "int"; break;
case DXGI_FORMAT_R32_UINT: type = "uint"; break;
}
const char* semantic = SEMANTICS[i % _countof(SEMANTICS)];
int semantic_index = i / _countof(SEMANTICS);
cursor += sprintf(cursor, "%s v%d: %s%d;", type, i, semantic, semantic_index);
}
cursor += sprintf(cursor, " }; void vertex_shader(Input input) {}");
QueryPerformanceCounter(&t0);
ID3DBlob* blob;
assert(SUCCEEDED(D3DCompile(shader, strlen(shader), NULL, NULL, NULL, "vertex_shader", "vs_4_0", D3DCOMPILE_SKIP_OPTIMIZATION, 0, &blob, NULL)));
QueryPerformanceCounter(&t1);
total_qpc_d3dcompile += t1.QuadPart - t0.QuadPart;
unsigned char* d3d_bytecode = blob->lpVtbl->GetBufferPointer(blob);
int size_of_d3d_bytecode = (int)blob->lpVtbl->GetBufferSize(blob);
#if 0
{
FILE* f;
f = fopen("ours.dxbc", "wb");
fwrite(our_bytecode, size_of_our_bytecode, 1, f);
fclose(f);
f = fopen("d3ds.dxbc", "wb");
fwrite(d3d_bytecode, size_of_d3d_bytecode, 1, f);
fclose(f);
}
#endif
assert(size_of_our_bytecode == size_of_d3d_bytecode);
assert(memcmp(our_bytecode, d3d_bytecode, size_of_d3d_bytecode) == 0);
blob->lpVtbl->Release(blob);
total_calls += 1;
}
}
}