Skip to content

Commit

Permalink
add inference benchmark script
Browse files Browse the repository at this point in the history
  • Loading branch information
matthewdouglas committed Dec 4, 2024
1 parent 213b10b commit ca6fd44
Showing 1 changed file with 134 additions and 0 deletions.
134 changes: 134 additions & 0 deletions benchmarking/inference_benchmark.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
"""
Inference benchmarking tool.
Requirements:
transformers
accelerate
bitsandbytes
optimum-benchmark
Usage: python inference_benchmark.py model_id
options:
-h, --help show this help message and exit
--configs {bf16,fp16,nf4,nf4-dq,int8,int8-decomp} [{bf16,fp16,nf4,nf4-dq,int8,int8-decomp} ...]
--bf16
--fp16
--nf4
--nf4-dq
--int8
--int8-decomp
--batches BATCHES [BATCHES ...]
--input-length INPUT_LENGTH
--out-dir OUT_DIR
"""

import argparse
from pathlib import Path

from optimum_benchmark import Benchmark, BenchmarkConfig, InferenceConfig, ProcessConfig, PyTorchConfig
from optimum_benchmark.logging_utils import setup_logging
import torch

BFLOAT16_SUPPORT = torch.cuda.get_device_capability()[0] >= 8

WEIGHTS_CONFIGS = {
"fp16": {"torch_dtype": "float16", "quantization_scheme": None, "quantization_config": {}},
"bf16": {"torch_dtype": "bfloat16", "quantization_scheme": None, "quantization_config": {}},
"nf4": {
"torch_dtype": "bfloat16" if BFLOAT16_SUPPORT else "float16",
"quantization_scheme": "bnb",
"quantization_config": {
"load_in_4bit": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_use_double_quant": False,
"bnb_4bit_compute_dtype": torch.bfloat16 if BFLOAT16_SUPPORT else "float16",
},
},
"nf4-dq": {
"torch_dtype": "bfloat16" if BFLOAT16_SUPPORT else "float16",
"quantization_scheme": "bnb",
"quantization_config": {
"load_in_4bit": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_use_double_quant": True,
"bnb_4bit_compute_dtype": torch.bfloat16 if BFLOAT16_SUPPORT else "float16",
},
},
"int8-decomp": {
"torch_dtype": "float16",
"quantization_scheme": "bnb",
"quantization_config": {
"load_in_8bit": True,
"llm_int8_threshold": 6.0,
},
},
"int8": {
"torch_dtype": "float16",
"quantization_scheme": "bnb",
"quantization_config": {
"load_in_8bit": True,
"llm_int8_threshold": 0.0,
},
},
}

if __name__ == "__main__":
setup_logging(level="INFO")

parser = argparse.ArgumentParser(description="bitsandbytes inference benchmark tool")

parser.add_argument("model_id", type=str, help="The model checkpoint to use.")

parser.add_argument(
"--configs",
nargs="+",
choices=["bf16", "fp16", "nf4", "nf4-dq", "int8", "int8-decomp"],
default=["nf4", "int8", "int8-decomp"],
)
parser.add_argument("--bf16", dest="configs", action="append_const", const="bf16")
parser.add_argument("--fp16", dest="configs", action="append_const", const="fp16")
parser.add_argument("--nf4", dest="configs", action="append_const", const="nf4")
parser.add_argument("--nf4-dq", dest="configs", action="append_const", const="nf4-dq")
parser.add_argument("--int8", dest="configs", action="append_const", const="int8")
parser.add_argument("--int8-decomp", dest="configs", action="append_const", const="int8-decomp")

parser.add_argument("--batches", nargs="+", type=int, default=[1, 8, 16, 32])
parser.add_argument("--input-length", type=int, default=64)

parser.add_argument("--out-dir", type=str, default="reports")

args = parser.parse_args()

out_dir = Path(args.out_dir)
out_dir.mkdir(parents=True, exist_ok=True)

for batch_size in args.batches:
print(f"Benchmarking batch size: {batch_size}")
for config in args.configs:
launcher_config = ProcessConfig(device_isolation=True, start_method="spawn")
scenario_config = InferenceConfig(
latency=True,
memory=True,
input_shapes={"batch_size": batch_size, "sequence_length": args.input_length},
)
backend_config = PyTorchConfig(
device="cuda",
device_ids="0",
device_map="auto",
no_weights=False,
model=args.model_id,
**WEIGHTS_CONFIGS[config],
)
benchmark_config = BenchmarkConfig(
name=f"benchmark-{config}-bsz{batch_size}",
scenario=scenario_config,
launcher=launcher_config,
backend=backend_config,
)

out_path = out_dir / f"benchmark_{config}_bsz{batch_size}.json"

benchmark_report = Benchmark.launch(benchmark_config)
benchmark_report.log()
benchmark_report.save_json(out_path)

0 comments on commit ca6fd44

Please sign in to comment.