-
Notifications
You must be signed in to change notification settings - Fork 653
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
213b10b
commit ca6fd44
Showing
1 changed file
with
134 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
""" | ||
Inference benchmarking tool. | ||
Requirements: | ||
transformers | ||
accelerate | ||
bitsandbytes | ||
optimum-benchmark | ||
Usage: python inference_benchmark.py model_id | ||
options: | ||
-h, --help show this help message and exit | ||
--configs {bf16,fp16,nf4,nf4-dq,int8,int8-decomp} [{bf16,fp16,nf4,nf4-dq,int8,int8-decomp} ...] | ||
--bf16 | ||
--fp16 | ||
--nf4 | ||
--nf4-dq | ||
--int8 | ||
--int8-decomp | ||
--batches BATCHES [BATCHES ...] | ||
--input-length INPUT_LENGTH | ||
--out-dir OUT_DIR | ||
""" | ||
|
||
import argparse | ||
from pathlib import Path | ||
|
||
from optimum_benchmark import Benchmark, BenchmarkConfig, InferenceConfig, ProcessConfig, PyTorchConfig | ||
from optimum_benchmark.logging_utils import setup_logging | ||
import torch | ||
|
||
BFLOAT16_SUPPORT = torch.cuda.get_device_capability()[0] >= 8 | ||
|
||
WEIGHTS_CONFIGS = { | ||
"fp16": {"torch_dtype": "float16", "quantization_scheme": None, "quantization_config": {}}, | ||
"bf16": {"torch_dtype": "bfloat16", "quantization_scheme": None, "quantization_config": {}}, | ||
"nf4": { | ||
"torch_dtype": "bfloat16" if BFLOAT16_SUPPORT else "float16", | ||
"quantization_scheme": "bnb", | ||
"quantization_config": { | ||
"load_in_4bit": True, | ||
"bnb_4bit_quant_type": "nf4", | ||
"bnb_4bit_use_double_quant": False, | ||
"bnb_4bit_compute_dtype": torch.bfloat16 if BFLOAT16_SUPPORT else "float16", | ||
}, | ||
}, | ||
"nf4-dq": { | ||
"torch_dtype": "bfloat16" if BFLOAT16_SUPPORT else "float16", | ||
"quantization_scheme": "bnb", | ||
"quantization_config": { | ||
"load_in_4bit": True, | ||
"bnb_4bit_quant_type": "nf4", | ||
"bnb_4bit_use_double_quant": True, | ||
"bnb_4bit_compute_dtype": torch.bfloat16 if BFLOAT16_SUPPORT else "float16", | ||
}, | ||
}, | ||
"int8-decomp": { | ||
"torch_dtype": "float16", | ||
"quantization_scheme": "bnb", | ||
"quantization_config": { | ||
"load_in_8bit": True, | ||
"llm_int8_threshold": 6.0, | ||
}, | ||
}, | ||
"int8": { | ||
"torch_dtype": "float16", | ||
"quantization_scheme": "bnb", | ||
"quantization_config": { | ||
"load_in_8bit": True, | ||
"llm_int8_threshold": 0.0, | ||
}, | ||
}, | ||
} | ||
|
||
if __name__ == "__main__": | ||
setup_logging(level="INFO") | ||
|
||
parser = argparse.ArgumentParser(description="bitsandbytes inference benchmark tool") | ||
|
||
parser.add_argument("model_id", type=str, help="The model checkpoint to use.") | ||
|
||
parser.add_argument( | ||
"--configs", | ||
nargs="+", | ||
choices=["bf16", "fp16", "nf4", "nf4-dq", "int8", "int8-decomp"], | ||
default=["nf4", "int8", "int8-decomp"], | ||
) | ||
parser.add_argument("--bf16", dest="configs", action="append_const", const="bf16") | ||
parser.add_argument("--fp16", dest="configs", action="append_const", const="fp16") | ||
parser.add_argument("--nf4", dest="configs", action="append_const", const="nf4") | ||
parser.add_argument("--nf4-dq", dest="configs", action="append_const", const="nf4-dq") | ||
parser.add_argument("--int8", dest="configs", action="append_const", const="int8") | ||
parser.add_argument("--int8-decomp", dest="configs", action="append_const", const="int8-decomp") | ||
|
||
parser.add_argument("--batches", nargs="+", type=int, default=[1, 8, 16, 32]) | ||
parser.add_argument("--input-length", type=int, default=64) | ||
|
||
parser.add_argument("--out-dir", type=str, default="reports") | ||
|
||
args = parser.parse_args() | ||
|
||
out_dir = Path(args.out_dir) | ||
out_dir.mkdir(parents=True, exist_ok=True) | ||
|
||
for batch_size in args.batches: | ||
print(f"Benchmarking batch size: {batch_size}") | ||
for config in args.configs: | ||
launcher_config = ProcessConfig(device_isolation=True, start_method="spawn") | ||
scenario_config = InferenceConfig( | ||
latency=True, | ||
memory=True, | ||
input_shapes={"batch_size": batch_size, "sequence_length": args.input_length}, | ||
) | ||
backend_config = PyTorchConfig( | ||
device="cuda", | ||
device_ids="0", | ||
device_map="auto", | ||
no_weights=False, | ||
model=args.model_id, | ||
**WEIGHTS_CONFIGS[config], | ||
) | ||
benchmark_config = BenchmarkConfig( | ||
name=f"benchmark-{config}-bsz{batch_size}", | ||
scenario=scenario_config, | ||
launcher=launcher_config, | ||
backend=backend_config, | ||
) | ||
|
||
out_path = out_dir / f"benchmark_{config}_bsz{batch_size}.json" | ||
|
||
benchmark_report = Benchmark.launch(benchmark_config) | ||
benchmark_report.log() | ||
benchmark_report.save_json(out_path) |