-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.bib
2665 lines (2156 loc) · 75.2 KB
/
main.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@inproceedings{GBM2022,
author={Ghosh, Bishwamittra and Basu, Debabrota and Meel, Kuldeep S.},
title={Algorithmic Fairness Verification with Graphical Models},
booktitle={Proceedings of AAAI},
year={2022}}
@inproceedings{nuriel2021permuted,
title={Permuted adain: Reducing the bias towards global statistics in image classification},
author={Nuriel, Oren and Benaim, Sagie and Wolf, Lior},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={9482--9491},
year={2021}
}
@book{peterson1972error,
title={Error-correcting codes},
author={Peterson, William Wesley and Weldon, Edward J},
year={1972},
publisher={MIT press}
}
@article{mistry2022milp,
title={An MILP Encoding for Efficient Verification of Quantized Deep Neural Networks},
author={Mistry, Samvid and Saha, Indranil and Biswas, Swarnendu},
journal={IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems},
volume={41},
number={11},
pages={4445--4456},
year={2022},
publisher={IEEE}
}
@article{hubara2016binarized,
title={Binarized neural networks},
author={Hubara, Itay and Courbariaux, Matthieu and Soudry, Daniel and El-Yaniv, Ran and Bengio, Yoshua},
journal={Advances in neural information processing systems},
volume={29},
year={2016}
}
@article{ruf2021towards,
title={Towards the right kind of fairness in AI},
author={Ruf, Boris and Detyniecki, Marcin},
journal={arXiv preprint arXiv:2102.08453},
year={2021}
}
@article{biswas2022fairify,
title={Fairify: Fairness Verification of Neural Networks},
author={Biswas, Sumon and Rajan, Hridesh},
journal={arXiv preprint arXiv:2212.06140},
year={2022}
}
@inproceedings{yan2022active,
title={Active fairness auditing},
author={Yan, Tom and Zhang, Chicheng},
booktitle={International Conference on Machine Learning},
pages={24929--24962},
year={2022},
organization={PMLR}
}
@inproceedings{murakonda2021quantifying,
title={Quantifying the privacy risks of learning high-dimensional graphical models},
author={Murakonda, Sasi Kumar and Shokri, Reza and Theodorakopoulos, George},
booktitle={International Conference on Artificial Intelligence and Statistics},
pages={2287--2295},
year={2021},
organization={PMLR}
}
@inproceedings{GBM2021,
author={Ghosh, Bishwamittra and Basu, Debabrota and Meel, Kuldeep S.},
title={Justicia: A Stochastic {SAT} Approach to Formally Verify Fairness},
booktitle={Proceedings of AAAI},
year={2021},
}
@article{lundberg2020local2global,
title={From local explanations to global understanding with explainable AI for trees},
author={Lundberg, Scott M. and Erion, Gabriel and Chen, Hugh and DeGrave, Alex and Prutkin, Jordan M. and Nair, Bala and Katz, Ronit and Himmelfarb, Jonathan and Bansal, Nisha and Lee, Su-In},
journal={Nature Machine Intelligence},
volume={2},
number={1},
pages={2522-5839},
year={2020},
publisher={Nature Publishing Group}
}
@inproceedings{sliwinski2019axiomatic,
title={Axiomatic characterization of data-driven influence measures for classification},
author={Sliwinski, Jakub and Strobel, Martin and Zick, Yair},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={33},
number={01},
pages={718--725},
year={2019}
}
@inproceedings{wang2022towards,
title={Towards intersectionality in machine learning: Including more identities, handling underrepresentation, and performing evaluation},
author={Wang, Angelina and Ramaswamy, Vikram V and Russakovsky, Olga},
booktitle={2022 ACM Conference on Fairness, Accountability, and Transparency},
pages={336--349},
year={2022}
}
@inproceedings{li2022achieving,
title={Achieving fairness at no utility cost via data reweighing with influence},
author={Li, Peizhao and Liu, Hongfu},
booktitle={International Conference on Machine Learning},
pages={12917--12930},
year={2022},
organization={PMLR}
}
@inproceedings{wang2022understanding,
title={Understanding Instance-Level Impact of Fairness Constraints},
author={Wang, Jialu and Wang, Xin Eric and Liu, Yang},
booktitle={International Conference on Machine Learning},
pages={23114--23130},
year={2022},
organization={PMLR}
}
@book{roth1988shapley,
title={The Shapley value: essays in honor of Lloyd S. Shapley},
author={Roth, Alvin E},
year={1988},
publisher={Cambridge University Press}
}
@article{han2022explanation,
title={Which explanation should i choose? a function approximation perspective to characterizing post hoc explanations},
author={Han, Tessa and Srinivas, Suraj and Lakkaraju, Himabindu},
journal={arXiv preprint arXiv:2206.01254},
year={2022}
}
@article{toraichi1987computational,
title={Computational complexity of spline interpolation},
author={Toraichi, Kazuo and Katagishi, Kazuki and Sekita, Iwao and Mori, Ryoichi},
journal={International journal of systems science},
volume={18},
number={5},
pages={945--954},
year={1987},
publisher={Taylor \& Francis}
}
@article{eshete2021making,
title={Making machine learning trustworthy},
author={Eshete, Birhanu},
journal={Science},
volume={373},
number={6556},
pages={743--744},
year={2021},
publisher={American Association for the Advancement of Science}
}
@book{luckin2018machine,
title={Machine Learning and Human Intelligence: The future of education for the 21st century.},
author={Luckin, Rosemary},
year={2018},
publisher={ERIC}
}
@inproceedings{GMM2022,
author={Ghosh, Bishwamittra and Malioutov, Dmitry and Meel, Kuldeep S.},
title={Efficient Learning of Interpretable Classification Rules},
booktitle={Proc. of JAIR},
year={2022},
}
@inproceedings{CGSM2020,
author={Ciampiconi, Lorenzo and Ghosh, Bishwamittra and Scarlett, Jonathan and Meel, Kuldeep S.},
title={A {MaxSAT}-based Framework for Group Testing},
booktitle={Proceedings of AAAI},
year={2020},
}
@inproceedings{GMM2020,
author={Ghosh, Bishwamittra and Malioutov, Dmitry and Meel, Kuldeep S.},
title={Classification Rules in Relaxed Logical Form},
booktitle={Proceedings of ECAI},
year={2020}
}
@inproceedings{GM2019,
author={Ghosh, Bishwamittra and Meel, Kuldeep S.},
title={{IMLI}: An Incremental Framework for {MaxSAT}-based Learning of Interpretable Classification Rules},
booktitle={Proceedings of AAAI/ACM Conference on AI, Ethics, and Society(AIES)},
year={2019},
}
@incollection{hnich2011survey,
title={A survey on CP-AI-OR hybrids for decision making under uncertainty},
author={Hnich, Brahim and Rossi, Roberto and Tarim, S Armagan and Prestwich, Steven},
booktitle={Hybrid Optimization},
pages={227--270},
year={2011},
publisher={Springer}
}
@inproceedings{chakraborty2013scalable,
title={A scalable approximate model counter},
author={Chakraborty, Supratik and Meel, Kuldeep S and Vardi, Moshe Y},
booktitle={International Conference on Principles and Practice of Constraint Programming},
pages={200--216},
year={2013},
organization={Springer}
}
@article{chakraborty2014distribution,
title={Distribution-aware sampling and weighted model counting for SAT},
author={Chakraborty, Supratik and Fremont, Daniel J and Meel, Kuldeep S and Seshia, Sanjit A and Vardi, Moshe Y},
journal={arXiv preprint arXiv:1404.2984},
year={2014}
}
@article{papadimitriou1985games,
title={Games against nature},
author={Papadimitriou, Christos H},
journal={Journal of Computer and System Sciences},
volume={31},
pages={288--301},
year={1985},
publisher={Elsevier}
}
@inproceedings{xu2019achieving,
title={Achieving differential privacy and fairness in logistic regression},
author={Xu, Depeng and Yuan, Shuhan and Wu, Xintao},
booktitle={Companion Proceedings of The 2019 World Wide Web Conference},
pages={594--599},
year={2019}
}
@inproceedings{zafar2017fairness,
title={Fairness constraints: Mechanisms for fair classification},
author={Zafar, Muhammad Bilal and Valera, Isabel and Rogriguez, Manuel Gomez and Gummadi, Krishna P},
booktitle={Artificial Intelligence and Statistics},
pages={962--970},
year={2017}
}
@article{yu2020computing,
title={Computing Optimal Decision Sets with SAT},
author={Yu, Jinqiang and Ignatiev, Alexey and Stuckey, Peter J and Bodic, Pierre Le},
journal={arXiv preprint arXiv:2007.15140},
year={2020}
}
@article{angelino2017learning,
title={Learning certifiably optimal rule lists for categorical data},
author={Angelino, Elaine and Larus-Stone, Nicholas and Alabi, Daniel and Seltzer, Margo and Rudin, Cynthia},
journal={The Journal of Machine Learning Research},
volume={18},
pages={8753--8830},
year={2017},
publisher={JMLR. org}
}
@inproceedings{dyer2003approximate,
title={Approximate counting by dynamic programming},
author={Dyer, Martin},
booktitle={Proceedings of the thirty-fifth annual ACM symposium on Theory of computing},
pages={693--699},
year={2003}
}
@inproceedings{kamiran2012decision,
title={Decision theory for discrimination-aware classification},
author={Kamiran, Faisal and Karim, Asim and Zhang, Xiangliang},
booktitle={2012 IEEE 12th International Conference on Data Mining},
pages={924--929},
year={2012},
organization={IEEE}
}
@article{john2020verifying,
title={Verifying Individual Fairness in Machine Learning Models},
author={John, Philips George and Vijaykeerthy, Deepak and Saha, Diptikalyan},
journal={arXiv preprint arXiv:2006.11737},
year={2020}
}
@article{bastani2019probabilistic,
title={Probabilistic verification of fairness properties via concentration},
author={Bastani, Osbert and Zhang, Xin and Solar-Lezama, Armando},
journal={Proceedings of the ACM on Programming Languages},
volume={3},
pages={1--27},
year={2019},
publisher={ACM New York, NY, USA}
}
@inproceedings{friedler2019comparative,
title={A comparative study of fairness-enhancing interventions in machine learning},
author={Friedler, Sorelle A and Scheidegger, Carlos and Venkatasubramanian, Suresh and Choudhary, Sonam and Hamilton, Evan P and Roth, Derek},
booktitle={Proceedings of the conference on fairness, accountability, and transparency},
pages={329--338},
year={2019}
}
@article{majercik2007appssat,
title={APPSSAT: Approximate probabilistic planning using stochastic satisfiability},
author={Majercik, Stephen M},
journal={International Journal of Approximate Reasoning},
volume={45},
pages={402--419},
year={2007},
publisher={Elsevier}
}
@inproceedings{fremont2017maximum,
title={Maximum Model Counting.},
author={Fremont, Daniel J and Rabe, Markus N and Seshia, Sanjit A},
booktitle={AAAI},
pages={3885--3892},
year={2017}
}
@inproceedings{raff2018fair,
title={Fair forests: Regularized tree induction to minimize model bias},
author={Raff, Edward and Sylvester, Jared and Mills, Steven},
booktitle={Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society},
pages={243--250},
year={2018}
}
@article{zhang2019faht,
title={Faht: an adaptive fairness-aware decision tree classifier},
author={Zhang, Wenbin and Ntoutsi, Eirini},
journal={arXiv preprint arXiv:1907.07237},
year={2019}
}
@inproceedings{zhang2018mitigating,
title={Mitigating unwanted biases with adversarial learning},
author={Zhang, Brian Hu and Lemoine, Blake and Mitchell, Margaret},
booktitle={Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society},
pages={335--340},
year={2018}
}
@inproceedings{zemel2013learning,
title={Learning fair representations},
author={Zemel, Rich and Wu, Yu and Swersky, Kevin and Pitassi, Toni and Dwork, Cynthia},
booktitle={International Conference on Machine Learning},
pages={325--333},
year={2013}
}
@inproceedings{kusner2017counterfactual,
title={Counterfactual fairness},
author={Kusner, Matt J and Loftus, Joshua and Russell, Chris and Silva, Ricardo},
booktitle={Advances in neural information processing systems},
pages={4066--4076},
year={2017}
}
@article{albarghouthi2017fairsquare,
title={{FairSquare}: probabilistic verification of program fairness},
author={Albarghouthi, Aws and D'Antoni, Loris and Drews, Samuel and Nori, Aditya V},
journal={Proceedings of the ACM on Programming Languages},
volume={1},
pages={1--30},
year={2017},
publisher={ACM New York, NY, USA}
}
@inproceedings{lee2017solving,
title={Solving Stochastic Boolean Satisfiability under Random-Exist Quantification.},
author={Lee, Nian-Ze and Wang, Yen-Shi and Jiang, Jie-Hong R},
booktitle={IJCAI},
pages={688--694},
year={2017}
}
@inproceedings{lee2018solving,
title={Solving Exist-Random Quantified Stochastic Boolean Satisfiability via Clause Selection.},
author={Lee, Nian-Ze and Wang, Yen-Shi and Jiang, Jie-Hong R},
booktitle={IJCAI},
pages={1339--1345},
year={2018}
}
@inproceedings{dwork2012fairness,
title={Fairness through awareness},
author={Dwork, Cynthia and Hardt, Moritz and Pitassi, Toniann and Reingold, Omer and Zemel, Richard},
booktitle={Proceedings of the 3rd innovations in theoretical computer science conference},
pages={214--226},
year={2012}
}
@inproceedings{feldman2015certifying,
title={Certifying and removing disparate impact},
author={Feldman, Michael and Friedler, Sorelle A and Moeller, John and Scheidegger, Carlos and Venkatasubramanian, Suresh},
booktitle={proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining},
pages={259--268},
year={2015}
}
@inproceedings{imms-sat18,
author = {Alexey Ignatiev and
Antonio Morgado and
Joao Marques{-}Silva},
title = {{PySAT:} {A} {Python} Toolkit for Prototyping
with {SAT} Oracles},
booktitle = {SAT},
pages = {428--437},
year = {2018},
url = {https://doi.org/10.1007/978-3-319-94144-8_26},
doi = {10.1007/978-3-319-94144-8_26}
}
@article{roussel2009pseudo,
title={Pseudo-Boolean and Cardinality Constraints.},
author={Roussel, Olivier and Manquinho, Vasco M},
journal={Handbook of satisfiability},
volume={185},
pages={695--733},
year={2009}
}
@inproceedings{narodytska2018learning,
title={Learning Optimal Decision Trees with SAT.},
author={Narodytska, Nina and Ignatiev, Alexey and Pereira, Filipe and Marques-Silva, Joao and RAS, IS},
booktitle={IJCAI},
pages={1362--1368},
year={2018}
}
@article{triantaphyllou1994inference,
title={Inference of a minimum size Boolean function from examples by using a new efficient branch-and-bound approach},
author={Triantaphyllou, Evangelos},
journal={Journal of Global Optimization},
volume={5},
pages={69--94},
year={1994},
publisher={Springer}
}
@inproceedings{neider2018learning,
title={Learning linear temporal properties},
author={Neider, Daniel and Gavran, Ivan},
booktitle={2018 Formal Methods in Computer Aided Design (FMCAD)},
pages={1--10},
year={2018},
organization={IEEE}
}
@article{kamath1992continuous,
title={A continuous approach to inductive inference},
author={Kamath, Anil P and Karmarkar, Narendra K and Ramakrishnan, KG and Resende, Mauricio GC},
journal={Mathematical programming},
volume={57},
pages={215--238},
year={1992},
publisher={Springer}
}
@article{ehrenfeucht1989general,
title={A general lower bound on the number of examples needed for learning},
author={Ehrenfeucht, Andrzej and Haussler, David and Kearns, Michael and Valiant, Leslie},
journal={Information and Computation},
volume={82},
pages={247--261},
year={1989},
publisher={Elsevier}
}
@article{littlestone1988learning,
title={Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm},
author={Littlestone, Nick},
journal={Machine learning},
volume={2},
pages={285--318},
year={1988},
publisher={Springer}
}
@book{G2010,
title={Checklist manifesto, the (HB)},
author={Gawande, Atul},
year={2010},
publisher={Penguin Books India}
}
@article{GWSBRR2001,
title={Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation},
author={Gage, Brian F and Waterman, Amy D and Shannon, William and Boechler, Michael and Rich, Michael W and Radford, Martha J},
journal={Jama},
volume={285},
pages={2864--2870},
year={2001},
publisher={American Medical Association}
}
@inproceedings{benhamou1994two,
title={Two proof procedures for a cardinality based language in propositional calculus},
author={Benhamou, Belaid and Sais, Lakhdar and Siegel, Pierre},
booktitle={Annual Symposium on Theoretical Aspects of Computer Science},
pages={71--82},
year={1994},
organization={Springer}
}
@article{fayyad1993multi,
title={Multi-interval discretization of continuous-valued attributes for classification learning},
author={Fayyad, Usama and Irani, Keki},
year={1993}
}
@article{steinke2014pblib,
title={PBLib—A C++ Toolkit for Encoding Pseudo--Boolean Constraints into CNF},
author={Steinke, Peter and Manthey, Norbert},
journal={TU Dresden, Dresden, Germany, Technical Report},
volume={1},
pages={2014},
year={2014}
}
@article{SAD2015,
title={A computational intelligence technique for effective medical diagnosis using decision tree algorithm},
author={Srikanth, Panigrahi and Anusha, Ch and Devarapalli, Dharmaiah},
journal={i-Manager's Journal on Computer Science},
volume={3},
pages={21},
year={2015},
publisher={iManager Publications}
}
@article{TV2013,
title={Which method predicts recidivism best?: a comparison of statistical, machine learning and data mining predictive models},
author={Tollenaar, Nikolaj and Van der Heijden, PGM},
journal={Journal of the Royal Statistical Society: Series A (Statistics in Society)},
volume={176},
pages={565--584},
year={2013},
publisher={Wiley Online Library}
}
@article{DF2018,
title={The accuracy, fairness, and limits of predicting recidivism},
author={Dressel, Julia and Farid, Hany},
journal={Science advances},
volume={4},
pages={eaao5580},
year={2018},
publisher={American Association for the Advancement of Science}
}
@article{ZUR2017,
title={Interpretable classification models for recidivism prediction},
author={Zeng, Jiaming and Ustun, Berk and Rudin, Cynthia},
journal={Journal of the Royal Statistical Society: Series A (Statistics in Society)},
volume={180},
pages={689--722},
year={2017},
publisher={Wiley Online Library}
}
@article{S2014,
title={Machine learning and law},
author={Surden, Harry},
journal={Wash. L. Rev.},
volume={89},
pages={87},
year={2014},
publisher={HeinOnline}
}
@article{MVBB2005,
title={Argument based machine learning applied to law},
author={Mo{\v{z}}ina, Martin and {\v{Z}}abkar, Jure and Bench-Capon, Trevor and Bratko, Ivan},
journal={Artificial Intelligence and Law},
volume={13},
pages={53-73},
year={2005},
publisher={Springer}
}
@article{K2001,
title={Machine learning for medical diagnosis: history, state of the art and perspective},
author={Kononenko, Igor},
journal={Artificial Intelligence in medicine},
volume={23},
pages={89-109},
year={2001},
publisher={Elsevier}
}
@inproceedings{malioutov2018mlic,
title={{MLIC}: A {MaxSAT}-Based framework for learning interpretable classification rules},
author={Malioutov, Dmitry and Meel, Kuldeep S},
booktitle={International Conference on Principles and Practice of Constraint Programming},
pages={312--327},
year={2018},
organization={Springer}
}
@inproceedings{verma2018fairness,
title={Fairness definitions explained},
author={Verma, Sahil and Rubin, Julia},
booktitle={2018 IEEE/ACM International Workshop on Software Fairness (FairWare)},
pages={1--7},
year={2018},
organization={IEEE}
}
@article{gajane2017formalizing,
title={On formalizing fairness in prediction with machine learning},
author={Gajane, Pratik and Pechenizkiy, Mykola},
journal={arXiv preprint arXiv:1710.03184},
year={2017}
}
@inproceedings{VML2012,
title={Making machine learning models interpretable.},
author={Vellido, Alfredo and Mart{\'\i}n-Guerrero, Jos{\'e} David and Lisboa, Paulo JG},
booktitle={ESANN},
volume={12},
pages={163--172},
year={2012},
organization={Citeseer}
}
@article{WRLKM2015,
title={Or's of and's for interpretable classification, with application to context-aware recommender systems},
author={Wang, Tong and Rudin, Cynthia and Doshi-Velez, Finale and Liu, Yimin and Klampfl, Erica and MacNeille, Perry},
journal={arXiv preprint arXiv:1504.07614},
year={2015}
}
@article{DK2017,
title={Towards a rigorous science of interpretable machine learning},
author={Doshi-Velez, Finale and Kim, Been},
journal={arXiv preprint arXiv:1702.08608},
year={2017}
}
@article{LRMM2015,
title={Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model},
author={Letham, Benjamin and Rudin, Cynthia and McCormick, Tyler H and Madigan, David and others},
journal={The Annals of Applied Statistics},
volume={9},
pages={1350--1371},
year={2015},
publisher={Institute of Mathematical Statistics}
}
@article{SWVM2015,
title={Interpretable two-level boolean rule learning for classification},
author={Su, Guolong and Wei, Dennis and Varshney, Kush R and Malioutov, Dmitry M},
journal={arXiv preprint arXiv:1511.07361},
year={2015}
}
@inproceedings{NIPMR2018,
title={Learning Optimal Decision Trees with SAT.},
author={Narodytska, Nina and Ignatiev, Alexey and Pereira, Filipe and Marques-Silva, Joao and RAS, IS},
booktitle={IJCAI},
pages={1362--1368},
year={2018}
}
@incollection{DGW2018,
title={Boolean decision rules via column generation},
author={Dash, Sanjeeb and Gunluk, Oktay and Wei, Dennis},
booktitle={Advances in Neural Information Processing Systems},
pages={4655--4665},
year={2018}
}
@incollection{GDX2018,
title = {Learning Small Predictors},
author = {Garg, Vikas and Dekel, Ofer and Xiao, Lin},
pages = {},
booktitle = {Advances in Neural Information Processing Systems},
year = {2018},
}
@inproceedings{craven1996extracting,
title={Extracting tree-structured representations of trained networks},
author={Craven, Mark and Shavlik, Jude W},
booktitle={Advances in neural information processing systems},
pages={24--30},
year={1996}
}
@inproceedings{EVM2015,
title={A semiquantitative group testing approach for learning interpretable clinical prediction rules},
author={Emad, Amin and Varshney, Kush R and Malioutov, Dmitry M},
booktitle={Proc. Signal Process. Adapt. Sparse Struct. Repr. Workshop, Cambridge, UK},
year={2015}
}
@inproceedings{WR2015,
title={Falling rule lists},
author={Wang, Fulton and Rudin, Cynthia},
booktitle={Artificial Intelligence and Statistics},
pages={1013--1022},
year={2015}
}
@inproceedings{BHO2009,
title={Minimising decision tree size as combinatorial optimisation},
author={Bessiere, Christian and Hebrard, Emmanuel and O’Sullivan, Barry},
booktitle={International Conference on Principles and Practice of Constraint Programming},
pages={173--187},
year={2009},
organization={Springer}
}
@book{Q2014,
title={C4. 5: programs for machine learning},
author={Quinlan, J Ross},
year={2014},
publisher={Elsevier}
}
@article{R1987,
title={Learning decision lists},
author={Rivest, Ronald L},
journal={Machine learning},
volume={2},
pages={229--246},
year={1987},
publisher={Springer}
}
@article{HFHPRW2009,
title={The WEKA data mining software: an update},
author={Hall, Mark and Frank, Eibe and Holmes, Geoffrey and Pfahringer, Bernhard and Reutemann, Peter and Witten, Ian H},
journal={ACM SIGKDD explorations newsletter},
volume={11},
pages={10--18},
year={2009},
publisher={ACM}
}
@article{mcginley2010ricci,
title={Ricci v. DeStefano: A Masculinities Theory Analysis},
author={McGinley, Ann C},
journal={Harv. JL \& Gender},
volume={33},
pages={581},
year={2010},
publisher={HeinOnline}
}
@article{angwin2016machine,
title={Machine bias risk assessments in criminal sentencing},
author={Angwin, Julia and Larson, Jeff and Mattu, Surya and Kirchner, Lauren},
journal={ProPublica, May},
volume={23},
year={2016}
}
@inproceedings{calmon2017optimized,
title={Optimized pre-processing for discrimination prevention},
author={Calmon, Flavio and Wei, Dennis and Vinzamuri, Bhanukiran and Ramamurthy, Karthikeyan Natesan and Varshney, Kush R},
booktitle={Advances in Neural Information Processing Systems},
pages={3992--4001},
year={2017}
}
@article{kamiran2012data,
title={Data preprocessing techniques for classification without discrimination},
author={Kamiran, Faisal and Calders, Toon},
journal={Knowledge and Information Systems},
volume={33},
pages={1--33},
year={2012},
publisher={Springer}
}
@book{M1976,
title={Myers-Briggs type indicator},
author={Briggs, Katharine C},
year={1976},
publisher={Consulting Psychologists Press Palo Alto, CA}
}
@misc{aif360-oct-2018,
title = "{AI Fairness} 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias",
author = {Rachel K. E. Bellamy and Kuntal Dey and Michael Hind and
Samuel C. Hoffman and Stephanie Houde and Kalapriya Kannan and
Pranay Lohia and Jacquelyn Martino and Sameep Mehta and
Aleksandra Mojsilovic and Seema Nagar and Karthikeyan Natesan Ramamurthy and
John Richards and Diptikalyan Saha and Prasanna Sattigeri and
Moninder Singh and Kush R. Varshney and Yunfeng Zhang},
month = oct,
year = {2018},
url = {https://arxiv.org/abs/1810.01943}
}
@article{emadlearning,
title={Learning Interpretable Clinical Prediction Rules using Threshold Group Testing},
author={Emad, Amin and Varshney, Kush R and Malioutov, Dmitry M}
}
@inproceedings{dash2014screening,
title={Screening for learning classification rules via Boolean compressed sensing},
author={Dash, Sanjeeb and Malioutov, Dmitry M and Varshney, Kush R},
booktitle={2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={3360--3364},
year={2014},
organization={IEEE}
}
@inproceedings{philipp2015pblib,
title={PBLib--a library for encoding pseudo-boolean constraints into CNF},
author={Philipp, Tobias and Steinke, Peter},
booktitle={International Conference on Theory and Applications of Satisfiability Testing},
pages={9--16},
year={2015},
organization={Springer}
}
@incollection{tseitin1983complexity,
title={On the complexity of derivation in propositional calculus},
author={Tseitin, Grigori S},
booktitle={Automation of reasoning},
pages={466--483},
year={1983},
publisher={Springer}
}
@article{lee2018towards,
title={Towards formal evaluation and verification of probabilistic design},
author={Lee, Nian-Ze and Jiang, Jie-Hong R},
journal={IEEE Transactions on Computers},
volume={67},
pages={1202--1216},
year={2018},
publisher={IEEE}
}
@article{littman2001stochastic,
title={Stochastic boolean satisfiability},
author={Littman, Michael L and Majercik, Stephen M and Pitassi, Toniann},
journal={Journal of Automated Reasoning},
volume={27},
pages={251--296},
year={2001},
publisher={Springer}
}
@article{dunkelaufairness,
title={Fairness-Aware Machine Learning},
author={Dunkelau, Jannik and Leuschel, Michael}
}
@book{biere2009handbook,
title={Handbook of satisfiability},
author={Biere, Armin and Heule, Marijn and van Maaren, Hans},
volume={185},
year={2009},
publisher={IOS press}
}
@article{corbett2018measure,
title={The measure and mismeasure of fairness: A critical review of fair machine learning},
author={Corbett-Davies, Sam and Goel, Sharad},
journal={arXiv preprint arXiv:1808.00023},
year={2018}
}
@article{chouldechova2020snapshot,
title={A snapshot of the frontiers of fairness in machine learning},
author={Chouldechova, Alexandra and Roth, Aaron},
journal={Communications of the ACM},
volume={63},
pages={82--89},
year={2020},
publisher={ACM New York, NY, USA}
}
@inproceedings{hardt2016equality,
title={Equality of opportunity in supervised learning},
author={Hardt, Moritz and Price, Eric and Srebro, Nati},
booktitle={Advances in neural information processing systems},
pages={3315--3323},
year={2016}
}
@article{mehrabi2019survey,
title={A survey on bias and fairness in machine learning},
author={Mehrabi, Ninareh and Morstatter, Fred and Saxena, Nripsuta and Lerman, Kristina and Galstyan, Aram},
journal={arXiv preprint arXiv:1908.09635},
year={2019}
}
@inproceedings{galhotra2017fairness,
title={Fairness testing: testing software for discrimination},
author={Galhotra, Sainyam and Brun, Yuriy and Meliou, Alexandra},
booktitle={Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering},
pages={498--510},
year={2017}
}
@inproceedings{ghosh2020formal,
author={Ghosh, Bishwamittra and Neider, Daniel},
title={A Formal Language Approach to Explaining {RNNs}},
booktitle={arXiv:2006.07292},
year={2020}}
@inproceedings{neider2020probably,
author={Neider, Daniel and Ghosh, Bishwamittra},
title={Probably Approximately Correct Explanations of Machine Learning Models via Syntax-Guided Synthesis},
booktitle={arXiv:2009.08770},
year={2020}}
@inproceedings{kautz1992planning,
title={Planning as Satisfiability.},