Skip to content

Latest commit

 

History

History
43 lines (26 loc) · 1005 Bytes

README.md

File metadata and controls

43 lines (26 loc) · 1005 Bytes

scFPN

Integrating Single-cell Multi-omics Data through Self-supervised Clustering

alt text

Requirements

Stable version:

python==3.8.16

pytorch==1.12.0

scanpy==1.9.3

anndata==0.8.0

episcanpy==0.4.0

Other required python libraries: numpy, scipy, pandas, h5py, networkx, tqdm etc.

Also you can install the required packages follow there instructions (tested on a linux terminal):

conda env create -f environment.yaml

Statistic of DGI Dataset

Dataset Chen et al. Cao et al. PBMC 10K-1 PBMC 10K-2 Ma te al. GSE194122
#Cell 1047 1621 10412 11020 32231 69249
#CellType 4 3 19 12 22 23
#Gene 18666 113153 36601 36601 13428 23296
#Peak 136771 189603 116490 344592 108377 120010
Protocol SNARE sci-CAR 10x 10x SHARE 10x

Usages

For training:

python train5.py -a DATASET_NAME -r default -z 32  --combine concat --gene-loss mse -o output  --count-key X