-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
304 lines (251 loc) · 11.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import numpy as np
from numpy.core.numeric import indices
import torch
import torch.nn as nn
from utilty import *
import math
import scipy.sparse as sp
"""
*********************************************************
Special function for only sparse region backpropataion layer.
"""
class SpecialSpmmFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, indices, values, shape, b):
assert indices.requires_grad == False
a = torch.sparse_coo_tensor(indices, values, shape)
ctx.save_for_backward(a, b)
ctx.N = shape[0]
return torch.matmul(a, b)
@staticmethod
def backward(ctx, grad_output):
a, b = ctx.saved_tensors
grad_values = grad_b = None
if ctx.needs_input_grad[1]:
grad_a_dense = grad_output.matmul(b.t())
edge_idx = a._indices()[0, :] * ctx.N + a._indices()[1, :]
grad_values = grad_a_dense.view(-1)[edge_idx]
if ctx.needs_input_grad[3]:
grad_b = a.t().matmul(grad_output)
return None, grad_values, None, grad_b
class SpecialSpmm(nn.Module):
def forward(self, indices, values, shape, b):
return SpecialSpmmFunction.apply(indices, values, shape, b)
"""
*********************************************************
Layers
"""
class Discriminator(nn.Module):
def __init__(self, emb_dim, hid_dim):
super(Discriminator, self).__init__()
self.f = nn.Bilinear(hid_dim, emb_dim, 1)
self.act = nn.Sigmoid()
def forward(self, X, Y):
sc = self.f(X, Y)
sc = self.act(sc)
return sc
class GCN(nn.Module):
def __init__(self, args):
super(GCN, self).__init__()
self.weight_size_list = eval(args.layer_size)
self.dropout = args.dropout
self.drop = nn.Dropout(p=self.dropout)
self.n_layers = len(self.weight_size_list)
self.weight_size_list = [args.emb_dim] + self.weight_size_list
self.MLP = nn.ModuleList(\
[nn.Linear(self.weight_size_list[k], self.weight_size_list[k+1]) for k in range(self.n_layers)])
self.act = nn.ReLU()
def forward(self, A, X):
I = sp.eye(A.shape[0])
A_hat = A + I
rowsum = np.array(A_hat.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
A_hat = A_hat.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt)
A_hat = sparse_to_tensor(A_hat, X.device)
inputX = X
for i in range(self.n_layers):
Xw = self.drop(self.MLP[i](inputX))
outputX = self.act(torch.matmul(A_hat, Xw))
inputX = outputX
return outputX
class MsMPN(nn.Module):
def __init__(self, args):
super(MsMPN, self).__init__()
self.weight_size_list = eval(args.layer_size)
self.n_layers = len(self.weight_size_list)
self.weight_size_list = [args.emb_dim] + self.weight_size_list
self.dropout = args.dropout
self.type = args.type
self.MLP1s = nn.ModuleList(\
[nn.Linear(2*self.weight_size_list[k], self.weight_size_list[k+1]) for k in range(self.n_layers)])
self.MLP2s = nn.ModuleList(\
[nn.Linear(self.weight_size_list[k], self.weight_size_list[k+1]) for k in range(self.n_layers)])
self.MLP3s = nn.ModuleList(\
[nn.Linear(self.weight_size_list[k], self.weight_size_list[k+1]) for k in range(self.n_layers)])
self.drop = nn.Dropout(p=self.dropout)
self.sigmoid = nn.Sigmoid()
self.relu = nn.LeakyReLU()
self.spmm = SpecialSpmm()
self.alpha = args.alpha
self.beta = args.beta
def forward(self, A, sub, X):
pre_embeddings = X
final_embeddings = [2*pre_embeddings]
for k in range(self.n_layers):
all_agg_embeddings = torch.matmul(A, pre_embeddings)
sub_agg_embeddings = self.spmm(sub[0], sub[1], torch.Size(A.shape), pre_embeddings)
if self.type == 3:
all_embeddings = pre_embeddings + all_agg_embeddings
sub_embeddings = pre_embeddings * sub_agg_embeddings
embeddings = self.sigmoid(self.alpha * self.MLP2s[k](all_embeddings)) + self.relu(self.beta * self.MLP3s[k](sub_embeddings))
elif self.type == 2:
embeddings = self.sigmoid(self.MLP2s[k](pre_embeddings + all_agg_embeddings + sub_agg_embeddings))
elif self.type == 1:
embeddings = self.sigmoid(self.MLP2s[k](pre_embeddings + sub_agg_embeddings))
else:
embeddings = self.sigmoid(self.MLP2s[k](pre_embeddings + all_agg_embeddings))
pre_embeddings = self.drop(embeddings)
norm_embeddings = nn.functional.normalize(embeddings, dim=1)
final_embeddings += [norm_embeddings]
final_embeddings = torch.cat(final_embeddings, 1)
return final_embeddings
"""
*********************************************************
Model
"""
class Model(nn.Module):
def __init__(self, data_config, args, init_embedding):
super(Model, self).__init__()
self.n_users = data_config['n_users']
self.n_items = data_config['n_items']
self.entity_embedding = nn.Embedding(self.n_users + self.n_items, args.emb_dim)
self.entity_embedding.weight = nn.Parameter(init_embedding['entity_embedding'])
self.k = args.k
self.batch_size = args.mi_batch_size
self.disc = Discriminator(args.emb_dim, args.hid_dim)
self.msmpn = MsMPN(args)
# self.gcn = GCN(args)
self.fc = nn.Linear(args.emb_dim, args.hid_dim)
self.drop = nn.Dropout(0.3)
self.act = nn.PReLU()
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for m in self.modules():
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight.data)
if isinstance(m, nn.Bilinear):
torch.nn.init.xavier_uniform_(m.weight.data)
def Encode(self, id):
return self.entity_embedding(id)
def sort_MI(self, pos, A):
indptr = A.tocsr().indptr
A = sparse_to_tensor(A, self.device)
value, indices = [], []
value1, indices1 = [], []
sc = torch.squeeze(torch.cat(pos, 0), -1)
for i in range(0,len(indptr)-1):
# ind = torch.randperm(indptr[i+1]-indptr[i])[:math.ceil(self.k*(indptr[i+1]-indptr[i]))].to(self.device)
# val = sc[indptr[i]:indptr[i+1]][ind]
val, ind = torch.topk(sc[indptr[i]:indptr[i+1]], math.ceil(self.k*(indptr[i+1]-indptr[i])))
val1, ind1 = torch.topk(sc[indptr[i]:indptr[i+1]], math.ceil(1*(indptr[i+1]-indptr[i])))
if len(val) == 0:
continue
val = torch.exp(val) / torch.sum(torch.exp(val))
value.append(val)
indices.append(A._indices()[:, indptr[i]:indptr[i+1]][:,ind])
value1.append(val1)
indices1.append(A._indices()[:, indptr[i]:indptr[i+1]][:,ind1])
value = torch.cat(value, 0)
indices = torch.cat(indices, 1)
value1 = torch.cat(value1, 0)
indices1 = torch.cat(indices1, 1)
return indices, value, indices1, value1
def _agg_sc(self, idx, pos, neg, A):
indptr = get_csr_indptr(A)
start = idx * self.batch_size
end = (idx + 1) * self.batch_size
if end > self.n_items + self.n_users:
end = self.n_items + self.n_users
new_pos, new_neg = [], []
for i in range(start, end):
if indptr[i+1] == indptr[i]:
continue
new_pos.append(torch.mean(pos[indptr[i]-indptr[start]:indptr[i+1]-indptr[start]]))
new_neg.append(torch.mean(neg[indptr[i]-indptr[start]:indptr[i+1]-indptr[start]], 0))
new_pos = torch.stack(new_pos, 0)
new_neg = torch.squeeze(torch.stack(new_neg, 0), -1)
return new_pos, new_neg
def MI(self, A, X, src, pos_t, neg_t):
X_1 = self.fc(X)
X_2 = self.act(torch.matmul(A, X_1) + X_1)
source = X_2.index_select(0, src)
pos_target = X.index_select(0, pos_t)
pos = self.act(self.disc(source, pos_target))
neg_sc_list = []
for i in range(len(neg_t)):
neg_target = X.index_select(0, neg_t[i])
neg_sc = self.disc(source, neg_target)
neg_sc_list.append(neg_sc)
neg = torch.stack(neg_sc_list, 1)
neg = self.act(neg)
return pos, neg
def forward(self, A, A2, X, sub=None, batch=None):
A = sparse_to_tensor(A, self.device)
A2 = sparse_to_tensor(A2, self.device)
X_1 = self.fc(X)
X_2 = nn.functional.normalize(torch.matmul(A, X) + X, dim=1)
if batch != None:
batch_idx, src, pos_t, neg_t = batch[0], batch[1], batch[2], batch[3]
src = src.to(self.device)
pos_t = pos_t.to(self.device)
neg_t = neg_t.to(self.device)
# pos, neg = self.MI(A, X, src, pos_t, neg_t)
source = X_2.index_select(0, src)
pos_target = X_1.index_select(0, pos_t)
pos = self.act(self.disc(source, pos_target))
neg_sc_list = []
for i in range(len(neg_t)):
neg_target = X_1.index_select(0, neg_t[i])
neg_sc = self.disc(source, neg_target)
neg_sc_list.append(neg_sc)
neg = torch.stack(neg_sc_list, 1)
neg = self.act(neg)
node_pos, node_neg = self._agg_sc(batch_idx, pos, neg, A)
return pos, node_pos, node_neg
# A = A + A2
embeddings = self.msmpn(A, sub, X_2)
ua_embeddings, ia_embeddings = torch.split(embeddings,\
[self.n_users, self.n_items], 0)
return ua_embeddings, ia_embeddings
"""
*********************************************************
Loss Function
"""
def BPR_loss(data_generator, user_embed, item_embed):
Base_loss, Reg_loss = 0., 0.
n_batch = data_generator.n_train // cmd_args.batch_size + 1
for _ in range(n_batch):
users, pos_items, neg_items = data_generator.generate_train_batch()
u_e, pos_i_e, neg_i_e = user_embed[users], item_embed[pos_items], item_embed[neg_items]
reg_loss = cmd_args.reg * \
(torch.norm(u_e, p=2) + torch.norm(pos_i_e, p=2) + torch.norm(neg_i_e, p=2)) / cmd_args.batch_size
pos_scores = torch.sum(torch.mul(u_e, pos_i_e), axis=1)
neg_scores = torch.sum(torch.mul(u_e, neg_i_e), axis=1)
base_loss = torch.mean(torch.nn.functional.softplus(-(pos_scores - neg_scores)))
Base_loss += base_loss
Reg_loss += reg_loss
bpr_loss = Base_loss + Reg_loss
return bpr_loss
def MI_loss(pos, neg, T, mode='kl'):
if mode == 'js':
e_pos = torch.log(1+torch.exp(-pos))
e_neg = torch.mean(torch.log(1+torch.exp(neg)),1)
return (e_pos+e_neg).mean()
elif mode == 'infonce':
e_pos = torch.exp(pos / T)
e_neg = torch.sum(torch.exp(neg / T), 1)
return -(torch.log(e_pos / e_neg)).mean()
elif mode == 'kl':
tmp = pos - torch.mean(torch.exp(neg), 1)
return -tmp.mean()