-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
163 lines (131 loc) · 5.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from operator import mod
import time
import torch
import random
import numpy as np
from tqdm import tqdm
import torch.nn
import torch.optim as optim
from metrics import *
from utilty import *
from load_data import *
from model import *
import warnings
warnings.filterwarnings("ignore")
if __name__ == '__main__':
if cmd_args.seed != -1:
random.seed(cmd_args.seed)
torch.manual_seed(cmd_args.seed)
# np.random.seed(cmd_args.seed)
print(cmd_args)
print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
print("loading data...")
data_generator = DataLoading(args=cmd_args)
if cmd_args.gpu_id >= 0:
torch.cuda.set_device(cmd_args.gpu_id)
else:
torch.cuda.set_device(gm.auto_choice())
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if cmd_args.pretrain is not None :
print("loading pretrained data...")
pretrain_data = load_pretrain(cmd_args.pretrain)
user_embed = torch.from_numpy(pretrain_data['user_embed']).float().to(device)
item_embed = torch.from_numpy(pretrain_data['item_embed']).float().to(device)
else:
user_embed = torch.ones([data_generator.n_users, cmd_args.emb_dim]).to(device)
item_embed = torch.ones([data_generator.n_items, cmd_args.emb_dim]).to(device)
torch.nn.init.xavier_uniform_(user_embed)
torch.nn.init.xavier_uniform_(item_embed)
print(user_embed[0][:5])
init_embedding = dict()
entity_embed = torch.cat((user_embed, item_embed), 0)
init_embedding['entity_embedding'] = entity_embed
model = Model(data_config=data_generator.get_config(), args=cmd_args, init_embedding=init_embedding).to(device)
# torch.save(model.state_dict(), './test_model')
# exit()
# model.load_state_dict(torch.load('./test_model'))
print("Loading Model..Number of Model Parameters: ", count_parameters(model))
if cmd_args.weight is not None :
#Testing
#to do
raise ValueError('Stop Testing')
optimizer = optim.Adam(model.parameters(),
lr=cmd_args.learning_rate,
amsgrad=True,
weight_decay=cmd_args.reg)
stopping_step, runing_step = 30, 0
best_rec = 0
all_entities_id = torch.LongTensor(np.arange(data_generator.n_items + data_generator.n_users)).to(device)
for epoch in range(cmd_args.num_epochs):
logger.info("epoch: {}".format(epoch))
"""
*********************************************************
Train.
"""
model.train()
t1 = time.time()
mi_loss, bpr_loss = 0, 0
n_batch = data_generator.adj.shape[0] // cmd_args.mi_batch_size + 1
optimizer.zero_grad()
entity_embedding = model.Encode(all_entities_id)
sub = None
mi_sc = []
for i in range(n_batch):
source, pos_target, neg_target = data_generator.generate_batch(i, cmd_args.mi_batch_size, cmd_args.neg_num)
sc, pos, neg = model(data_generator.adj, data_generator.A, entity_embedding, batch=(i, source, pos_target, neg_target))
batch_mi_loss = cmd_args.gamma * MI_loss(pos, neg, cmd_args.T, cmd_args.mi_kind)
mi_loss += batch_mi_loss
mi_sc.append(sc)
sub = model.sort_MI(mi_sc, data_generator.adj)
# ind, val = sub[0], sub[1]
# for i in range(len(val)):
# if ind[1][i] > 4000 and ind[1][i] < 4010:
# logger.info("{} {} : {}".format(ind[0][i], ind[1][i], val[i]))
user_embed, item_embed = model(data_generator.adj, data_generator.A, entity_embedding, sub=sub)
bpr_loss = BPR_loss(data_generator, user_embed, item_embed)
loss = mi_loss + bpr_loss
loss.backward()
optimizer.step()
t2 = time.time()
"""
*********************************************************
Test.
"""
model.eval()
ret = generate_result(len(cmd_args.Ks))
test_users = list(data_generator.test_user_dict.keys())
n_test_users = len(test_users)
n_batch = n_test_users // cmd_args.batch_size + 1
count = 0
for id in range(n_batch):
start = id * cmd_args.batch_size
end = (id + 1) * cmd_args.batch_size
user_batch = test_users[start: end]
item_batch = range(data_generator.n_items)
u_e, i_e = user_embed[user_batch], item_embed[item_batch]
batch_predictions = torch.matmul(u_e, i_e.transpose(0,1)).cpu().detach().numpy()
batch_result = batch_metrics(batch_predictions, user_batch, data_generator)
count += len(batch_result)
for re in batch_result:
ret['precision'] += re['precision']/n_test_users
ret['recall'] += re['recall']/n_test_users
ret['ndcg'] += re['ndcg']/n_test_users
ret['hit_ratio'] += re['hit_ratio']/n_test_users
ret['auc'] += re['auc']/n_test_users
# ret['predict'][re['predict'][0]] = np.array(re['predict'])[1:]
assert count == n_test_users
t3 = time.time()
show_step = cmd_args.show_step
if (epoch + 1) % show_step == 0:
np.set_printoptions(formatter={'float': '{: 0.5f}'.format})
print('Epoch %d [%.1fs + %.1fs]: train==[%.5f = %.5f + %.5f], recall=' % (epoch, t2 - t1, t3 - t2, bpr_loss+mi_loss, bpr_loss, mi_loss) \
, ret['recall'], ', precision=', ret['precision'] , ', auc=[%.5f], sum_recall=[%.5f]' % (ret['auc'], sum(ret['recall'])) \
)
runing_step += 1
if best_rec <= ret['auc']:
best_rec = ret['auc']
best_all_ret = ret
runing_step = 0
if runing_step >= stopping_step:
print('End of trainning! Best recall=', best_all_ret['recall'], ', precision=', best_all_ret['precision'] , ', auc=[%.5f]' % (best_all_ret['auc']))
break