-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathload_data.py
234 lines (180 loc) · 7.7 KB
/
load_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import collections
import numpy as np
import random as rd
import scipy.sparse as sp
from torch import dtype
from utilty import *
rd.seed(2021)
np.random.seed(2021)
class DataLoading(object):
def __init__(self, args):
self.train_path = args.dataset + "/train.txt"
self.test_path = args.dataset + "/test.txt"
# self.item_graph_path = args.dataset + "/item_graph.txt"
# self.user_graph_path = args.dataset + "/user_graph.txt"
if cmd_args.f == 0:
self.item_graph_path = "./kg/sim/item_graph.txt"
self.user_graph_path = "./kg/sim/user_graph.txt"
else:
self.item_graph_path = "./kg/test/item_graph.txt"
self.user_graph_path = "./kg/test/user_graph.txt"
self.batch_size = args.batch_size
# Loading data
self.train_data, self.train_user_dict = self.load_graph(self.train_path)
self.test_data, self.test_user_dict = self.load_graph(self.test_path)
self.item_graph, _ = self.load_graph(self.item_graph_path)
self.user_graph, _ = self.load_graph(self.user_graph_path)
self.statistic()
# Processing data
self.adj, self.A = self._get_adj()
self.all_data_dict = self._get_all_data()
self.print_data_info()
def load_graph(self, path):
user_dict = dict()
inter_mat = list()
lines = open(path, 'r').readlines()
for l in lines:
inters = [int(i) for i in l.strip().split(' ')]
u_id, pos_ids = inters[0], inters[1:]
pos_ids = list(set(pos_ids))
for i_id in pos_ids:
inter_mat.append([u_id, i_id])
if len(pos_ids) > 0:
user_dict[u_id] = pos_ids
return np.array(inter_mat), user_dict
def statistic(self):
# self.n_users = max(max(self.train_data[:, 0]), max(self.test_data[:, 0])) + 1
# self.n_items = max(max(self.train_data[:, 1]), max(self.test_data[:, 1])) + 1
self.n_users = max(max(self.train_data[:, 0]), max(self.test_data[:, 0]), max(self.user_graph[:, 0]), max(self.user_graph[:, 1])) + 1
self.n_items = max(max(self.train_data[:, 1]), max(self.test_data[:, 1]), max(self.item_graph[:, 0]), max(self.item_graph[:, 1])) + 1
self.n_train = len(self.train_data)
self.n_test = len(self.test_data)
def print_data_info(self):
print('[n_users, n_items]=[%d, %d]' % (self.n_users, self.n_items))
print('[n_train, n_test]=[%d, %d]' % (self.n_train, self.n_test))
print('[n_edges]=[%d]' % (len(self.adj.tocoo().row)))
def _get_relational_lap(self, A):
def _si_norm_lap(adj):
rowsum = np.array(adj.sum(1))
d_inv = np.power(rowsum, -1).flatten()
d_inv[np.isinf(d_inv)] = 0.
d_mat_inv = sp.diags(d_inv)
norm_adj = d_mat_inv.dot(adj)
return norm_adj.tocsr()
def _bi_norm_lap(adj):
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
bi_lap = adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt)
return bi_lap.tocsr()
lap_list = [_si_norm_lap(A_) for A_ in A]
return sum(lap_list)
def _get_adj(self):
def _np_mat2sp_adj(np_mat, row_pre=0, col_pre=0):
n_all = self.n_items + self.n_users
a_rows = np_mat[:, 0] + row_pre
a_cols = np_mat[:, 1] + col_pre
a_vals = [1.] * len(a_rows)
b_rows = a_cols
b_cols = a_rows
b_vals = [1.] * len(b_rows)
a_adj = sp.coo_matrix((a_vals, (a_rows, a_cols)), shape=(n_all, n_all))
b_adj = sp.coo_matrix((b_vals, (b_rows, b_cols)), shape=(n_all, n_all))
return a_adj, b_adj
R, R_inv = _np_mat2sp_adj(self.train_data, row_pre=0, col_pre=self.n_users)
A = R + R_inv
I, _ = _np_mat2sp_adj(self.item_graph, row_pre=self.n_users, col_pre=self.n_users)
U, _ = _np_mat2sp_adj(self.user_graph)
print(len(I.tocoo().col))
print(len(U.tocoo().col))
adj = I + U
return adj, A
def _get_all_data(self):
data_dict = collections.defaultdict(list)
lap = self.adj.tocoo()
rows = lap.row
cols = lap.col
for i_id in range(len(rows)):
head = rows[i_id]
tail = cols[i_id]
data_dict[head].append(tail)
return data_dict
def get_config(self):
config = dict()
config['n_users'] = self.n_users
config['n_items'] = self.n_items
return config
def generate_train_batch(self):
exist_users = self.train_user_dict.keys()
if self.batch_size <= self.n_users:
users = rd.sample(exist_users, self.batch_size)
else:
users = [rd.choice(exist_users) for _ in range(self.batch_size)]
def sample_pos_items_for_u(u, num):
pos_items = self.train_user_dict[u]
n_pos_items = len(pos_items)
pos_batch = []
while True:
if len(pos_batch) == num: break
pos_id = np.random.randint(low=0, high=n_pos_items, size=1)[0]
pos_i_id = pos_items[pos_id]
if pos_i_id not in pos_batch:
pos_batch.append(pos_i_id)
return pos_batch
def sample_neg_items_for_u(u, num):
neg_items = []
while True:
if len(neg_items) == num: break
neg_i_id = np.random.randint(low=0, high=self.n_items,size=1)[0]
if neg_i_id not in self.train_user_dict[u] and neg_i_id not in neg_items:
neg_items.append(neg_i_id)
return neg_items
pos_items, neg_items = [], []
for u in users:
pos_items += sample_pos_items_for_u(u, 1)
neg_items += sample_neg_items_for_u(u, 1)
return users, pos_items, neg_items
def generate_neg_list(self, neg_num):
neg_n_list = []
A = self.adj.tocoo()
n_all = self.n_users + self.n_items
source = A.row
for j in range(neg_num):
neg_list = []
i = 0
while True:
if i == len(A.row): break
neg = np.random.randint(low=0, high=n_all,size=1)[0]
if neg not in self.all_data_dict[source[i]]:
neg_list.append(neg)
i += 1
neg_list = torch.LongTensor(neg_list)
neg_n_list.append(neg_list)
neg_n_list = torch.stack(neg_n_list, 0)
return neg_n_list
def generate_batch(self, batch, batch_size, neg_num):
def sample_neg(source):
neg_list = []
i = 0
while True:
if i == len(source): break
neg = np.random.randint(low=0, high=self.adj.shape[0],size=1)[0]
if neg not in self.all_data_dict[source[i]]:
neg_list.append(neg)
i += 1
return neg_list
start = batch * batch_size
end = (batch + 1) * batch_size
if end > self.adj.shape[0]:
end = self.adj.shape[0]
indptr = self.adj.tocsr().indptr
source = self.adj.tocoo().row[indptr[start]:indptr[end]]
pos_target = self.adj.tocoo().col[indptr[start]:indptr[end]]
neg_target = []
for j in range(neg_num):
neg_target.append(sample_neg(source))
source = torch.LongTensor(source)
pos_target = torch.LongTensor(pos_target)
neg_target = torch.LongTensor(neg_target)
return source, pos_target, neg_target