-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer_dpi.py
656 lines (532 loc) · 31.5 KB
/
trainer_dpi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@author: Jiahua Rao
@license: BSD-3-Clause, For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
@contact: jiahua.rao@gmail.com
@time: 2023-06-11
'''
import os
import copy
import json
from time import time
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from sklearn.metrics import roc_auc_score
from torch_sparse import SparseTensor
from torch_geometric.utils import negative_sampling, add_self_loops
from config import parse_args, Config
from utils import write_log, Metrictor_DPI, GPUManager
from utils import molecule_collate_fn, protein_collate_fn
from dataset import DrugProteinDataset, LinkGraphDataset
from models import GNN_DPI, NetGNN
from optim import RAdam, Lookahead
import warnings
warnings.filterwarnings('ignore')
class EMTrainer:
"""
Expectation-maximization Trainer.
"""
def __init__(self, args, cfg):
self.args = args
self.config = cfg
self.device = GPUManager().auto_choice()
self.logging = open(self.args.logging_file, 'a', buffering=1)
self.em_range = range(self.config.run_config.em_total_iters)
inter_dataset_config = self.config.inter_dataset_config
dataset_name = list(inter_dataset_config.keys())[0]
self.inter_dataset_root = args.inter_data_dir
self.inter_dataset_config = inter_dataset_config[dataset_name]
with open(self.args.logging_file, "a") as f:
f.write(json.dumps(vars(self.args)) + "\n")
self.gnn_model = self.bulid_intra_model()
self.link_dataset = LinkGraphDataset(dataset_name, self.inter_dataset_config, root=os.path.join(self.inter_dataset_root, dataset_name.replace('-', '_')))
self.link_model = self.build_inter_model()
def bulid_intra_model(self):
intra_model_cfg = self.config.model_config.intra_model
model = GNN_DPI(args=intra_model_cfg)
return model
def build_inter_model(self):
model = NetGNN(in_dim=self.config.model_config.intra_model.hid_dim,
hidden=self.config.model_config.inter_model.hidden,
class_num=1)
return model
def multi_scale_em_train(self):
best_aupr, self.best_em_iter = 0, -1
molecule_embeddings, protein_embeddings, link_graph = None, None, None
for self.em_iter in self.em_range:
self.gnn_model, _ = self._maximization(link_model=self.link_model,
link_graph=link_graph,
molecule_embeddings=molecule_embeddings,
protein_embeddings=protein_embeddings)
molecule_embeddings, protein_embeddings = self.gnn_trainer.get_graph_embedding(self.gnn_model)
self.link_model, link_outputs = self._expectation(gnn_model=self.gnn_model, molecule_embeddings=molecule_embeddings, protein_embeddings=protein_embeddings)
link_graph = link_outputs['graph']
if link_outputs['best_valid_aupr'] > best_aupr:
best_aupr = link_outputs['best_valid_aupr']
self.best_em_iter = self.em_iter
torch.save({'em_iter': self.em_iter,
'best_aupr': best_aupr,
'link_graph': link_graph,
'protein_embeddings': protein_embeddings,
'molecule_embeddings': molecule_embeddings,
'gnn_state_dict': self.gnn_model.state_dict(),
'link_state_dict': self.link_model.state_dict()},
os.path.join(self.args.res_dir, f'best_model.ckpt'))
if self.em_iter == (self.em_range.stop - 1):
self.final_prediction()
def _maximization(self, link_model=None, link_graph=None, molecule_embeddings=None, protein_embeddings=None):
# Protein GNN training
write_log(self.logging, f'\n <<<<<<<<<< Protein GNN training >>>>>>>>>>')
self.gnn_model.reset_parameters()
self.gnn_trainer = DrugProteinTrainer(args=self.args,
config=self.config,
model=self.gnn_model,
dataset=self.link_dataset,
device=self.device,
logging=self.logging)
if protein_embeddings is None:
molecule_embeddings, protein_embeddings = self.gnn_trainer.get_graph_embedding(self.gnn_model)
self.gnn_model, gnn_outputs = self.gnn_trainer.train(link_model=link_model,
link_graph=link_graph,
molecule_embeddings=molecule_embeddings,
protein_embeddings=protein_embeddings,
em_iter=self.em_iter)
msg = {
'em_iter': self.em_iter,
**{f'gnn_{k}': v for k, v in gnn_outputs.items()},
}
with open(self.args.em_log_file, "a") as f:
f.write(json.dumps(msg) + "\n")
return self.gnn_model, gnn_outputs
def _expectation(self, gnn_model=None, molecule_embeddings=None, protein_embeddings=None):
# Link GNN training
write_log(self.logging, f'\n <<<<<<<<<< Link GNN training >>>>>>>>>>')
self.link_model.reset_parameters()
protein_dataset = self.gnn_trainer.train_loader.dataset.protein_dataset
molecule_dataset = self.gnn_trainer.train_loader.dataset.molecule_dataset
self.link_trainer = DPILinkTrainer(args=self.args,
config=self.config,
model=self.link_model,
dataset=self.link_dataset,
device=self.device,
logging=self.logging)
self.link_model, link_outputs = self.link_trainer.train(gnn_model=gnn_model,
molecule_dataset=molecule_dataset,
protein_dataset=protein_dataset,
molecule_embeddings=molecule_embeddings,
protein_embeddings=protein_embeddings,
em_iter=self.em_iter)
msg = {
'em_iter': self.em_iter,
**{f'link_{k}': v for k, v in link_outputs.items() if k != 'graph'},
}
with open(self.args.em_log_file, "a") as f:
f.write(json.dumps(msg) + "\n")
return self.link_model, link_outputs
def final_prediction(self, best_em_iter=None):
best_em_iter = self.best_em_iter if best_em_iter is None else best_em_iter
final_link_model = copy.deepcopy(self.link_model)
final_link_model.load_state_dict(torch.load(os.path.join(self.args.res_dir, f'link_{best_em_iter}_best_model.ckpt'))['state_dict'])
pseudo_graph = torch.load(os.path.join(self.args.res_dir, f'link_{best_em_iter}_best_model.ckpt'))['graph']
link_trainer = DPILinkTrainer(args=self.args,
config=self.config,
model=final_link_model,
dataset=self.link_dataset,
device=self.device,
logging=self.logging)
if pseudo_graph is not None:
pseudo_graph = link_trainer.graph
_, test_metrics = link_trainer.evaluate(graph=pseudo_graph, adj=pseudo_graph.full_adj_t, save_probs=True, em_iter=best_em_iter)
write_log(self.logging,
"em_iter: {} Test AUC: {}, AUPR: {}, Recall: {}, Precision: {}, F1: {}"
.format(best_em_iter, test_metrics['auc'], test_metrics['aupr'], test_metrics['recall'], test_metrics['precision'], test_metrics['f1']))
return
class DrugProteinTrainer:
def __init__(self, args, config, model, dataset, device, logging=None) -> None:
self.args = args
self.config = config
self.link_dataset = dataset
self.run_config = self.config.run_config
self.patience = self.run_config.patience
self.logging = logging
self.device = torch.device(device)
self.train_loader, self.valid_loader, self.test_loader = self.create_dataloaders()
self.graph = self.link_dataset[0]
self.test_edges = self.link_dataset.get_edge_split()['test']['edge']
self.model = model.to(self.device)
optimizer_inner = RAdam(self.model.parameters(), lr=self.run_config.learning_rate, weight_decay=1e-4)
self.optimizer = optimizer_inner# Lookahead(optimizer_inner, k=5, alpha=0.5)
self.criterion = torch.nn.CrossEntropyLoss()
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='min', factor=0.5, patience=10,
verbose=True)
self.evaluator = Metrictor_DPI
self.load_best_model = True
def create_dataloaders(self):
train_dataset = DrugProteinDataset(self.args, self.config, split='train')
valid_dataset = DrugProteinDataset(self.args, self.config, split='valid')
test_dataset = DrugProteinDataset(self.args, self.config, split='test')
train_loader = DataLoader(train_dataset,
batch_size=self.run_config.batch_size,
shuffle=True,
sampler=None,
collate_fn=train_dataset.collate_fn,
pin_memory=True,
num_workers=self.args.num_workers,
prefetch_factor=self.args.prefetch)
valid_loader = DataLoader(valid_dataset,
batch_size=self.run_config.batch_size,
shuffle=False,
drop_last=False,
sampler=None,
collate_fn=valid_dataset.collate_fn,
pin_memory=True,
num_workers=self.args.num_workers,
prefetch_factor=self.args.prefetch)
test_loader = DataLoader(test_dataset,
batch_size=self.run_config.batch_size,
shuffle=False,
drop_last=False,
sampler=None,
collate_fn=test_dataset.collate_fn,
pin_memory=True,
num_workers=self.args.num_workers,
prefetch_factor=self.args.prefetch)
return train_loader, valid_loader, test_loader
def _train_epoch(self, loader, link_model=None, molecule_embeddings=None, protein_embeddings=None, pseudo_labels=None):
self.model.train()
steps = 0
loss_sum = 0.0
# num_batches = len(loader)
# pseudo_batch_size = int(len(self.test_edges) // num_batches) + 1
torch.cuda.empty_cache()
unobserved_losses = self.eval_pseudo_step(self.model, self.test_edges, pseudo_labels)
for step, batch in enumerate(self.train_loader):
for k, v in batch.items():
batch[k] = v.to(self.device, non_blocking=True)
interactions = batch["label"].long()
output = self.model(batch)
loss = self.criterion(output, interactions.squeeze(-1))
if self.is_augmented and self.run_config.pl_ratio > 0:
pl_weight = self.run_config.pl_ratio
_, observed_labels = self.link_inference(link_model, batch['edge'], self.graph, molecule_embeddings, protein_embeddings)
pl_loss = self.criterion(output, observed_labels.squeeze(-1)) + unobserved_losses
loss = pl_weight * pl_loss + (1 - pl_weight) * loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
loss_sum += loss.item()
steps += 1
torch.cuda.empty_cache()
return loss_sum / steps
@torch.no_grad()
def evaluate(self, test_loader):
self.model.eval()
valid_label_list = []
valid_prob_list = []
valid_loss_sum = 0.0
valid_steps = 0
for step, batch in enumerate(test_loader):
for k, v in batch.items():
batch[k] = v.to(self.device, non_blocking=True)
output = self.model(batch)
interactions = batch["label"].long()
loss = self.criterion(output, interactions.squeeze(-1))
valid_loss_sum += loss.item()
scores = F.softmax(output, dim=1)[:, 1].to("cpu").data.tolist()
correct_labels = interactions.to("cpu").data.tolist()
valid_label_list.extend(correct_labels)
valid_prob_list.extend(scores)
valid_steps += 1
valid_loss = valid_loss_sum / valid_steps
valid_label_list = np.array(valid_label_list)
valid_prob_list = np.array(valid_prob_list)
valid_metrics = self.evaluator(valid_label_list, valid_prob_list)
return valid_loss, valid_metrics
def train(self, link_model=None, link_graph=None, molecule_embeddings=None, protein_embeddings=None, em_iter=0):
self.is_augmented = self.run_config.is_augmented and link_model is not None and protein_embeddings is not None
pseudo_labels = None
if link_model is not None and protein_embeddings is not None:
self.graph = link_graph if link_graph is not None else self.graph
link_model = link_model.to(self.device)
self.graph.adj_t = SparseTensor.from_edge_index(self.graph.edge_index, sparse_sizes=(self.graph.num_nodes, self.graph.num_nodes)).to(self.device)
self.graph.adj_t = self.graph.adj_t.to_symmetric().coalesce()
_, pseudo_labels = self.link_inference(link_model, self.test_edges, self.graph, molecule_embeddings, protein_embeddings)
stopper = 0
best_valid_aupr = 0.0
best_valid_aupr_epoch = 0
# ! GNN Training
for self.cur_epoch in range(self.run_config.gnn_epochs):
start_time = time()
loss = self._train_epoch(self.train_loader, link_model=link_model, molecule_embeddings=molecule_embeddings, protein_embeddings=protein_embeddings, pseudo_labels=pseudo_labels)
valid_loss, valid_metrics = self.evaluate(self.valid_loader)
test_loss, test_metrics = self.evaluate(self.test_loader)
if self.scheduler != None:
self.scheduler.step(loss)
write_log(self.logging, "epoch: {}, now learning rate: {}".format(self.cur_epoch, self.scheduler.optimizer.param_groups[0]['lr']))
if best_valid_aupr < valid_metrics["aupr"]:
best_valid_aupr = valid_metrics["aupr"]
best_valid_aupr_epoch = self.cur_epoch
torch.save({'epoch': self.cur_epoch,
'state_dict': self.model.state_dict()},
os.path.join(self.args.res_dir, f'gnn_{em_iter}_best_model.ckpt'))
stopper = 0
write_log(self.logging,
"epoch: {}, time {}, Training_avg: label_loss: {}, Validation_avg: loss: {}, auc: {}, aupr: {}, precision: {}, recall: {}, f1: {}, Test_avg: loss: {}, auc: {}, aupr: {}, precision: {}, recall: {}, f1: {}, Best valid_aupr: {}, in {} epoch"
.format(self.cur_epoch, time() - start_time, loss, valid_loss, valid_metrics["auc"], valid_metrics["aupr"], valid_metrics["precision"], valid_metrics["recall"], valid_metrics["f1"], test_loss, test_metrics["auc"], test_metrics["aupr"], test_metrics["precision"], test_metrics["recall"], test_metrics["f1"],
best_valid_aupr, best_valid_aupr_epoch))
stopper += 1
if stopper > self.patience:
write_log(self.logging, "Early Stopping.")
break
# ! Finished training, load checkpoints
if self.load_best_model:
self.model.load_state_dict(torch.load(os.path.join(self.args.res_dir, f'gnn_{em_iter}_best_model.ckpt'))['state_dict'])
return self.model, {"best_valid_aupr": best_valid_aupr, "best_valid_aupr_epoch": best_valid_aupr_epoch}
def get_graph_embedding(self, model):
protein_dataset = self.train_loader.dataset.protein_dataset
loader = DataLoader(protein_dataset,
batch_size=4,
shuffle=False,
drop_last=False,
collate_fn=protein_collate_fn,
num_workers=self.args.num_workers)
protein_embeddings = []
with torch.no_grad():
for protein_data in loader:
for k, v in protein_data.items():
protein_data[k] = v.to(self.device, non_blocking=True)
protein_embeddings.append(model.get_protein_representation(protein_data).cpu())
protein_embeddings = torch.cat(protein_embeddings, dim=0)
torch.cuda.empty_cache()
molecule_dataset = self.train_loader.dataset.molecule_dataset
loader = DataLoader(molecule_dataset,
batch_size=4,
shuffle=False,
drop_last=False,
collate_fn=molecule_collate_fn,
num_workers=self.args.num_workers)
molecule_embeddings = []
with torch.no_grad():
for molecule_data in loader:
for k, v in molecule_data.items():
molecule_data[k] = v.to(self.device, non_blocking=True)
molecule_embeddings.append(model.get_mol_representation(molecule_data).cpu())
molecule_embeddings = torch.cat(molecule_embeddings, dim=0)
torch.cuda.empty_cache()
return protein_embeddings, molecule_embeddings
@torch.no_grad()
def eval_pseudo_step(self, model, test_edges, pseudo_labels):
molecule_num = len(self.train_loader.dataset.molecule_dataset)
loss = 0
for step, perm_idx in enumerate(DataLoader(range(test_edges.size(0)), batch_size=1, shuffle=False)):
edges = test_edges[perm_idx]
labels = pseudo_labels[perm_idx]
# edges = self.test_edges[batch_index*batch_size : (batch_index+1)*batch_size]
batch = {
"edge": edges.to(torch.long),
**molecule_collate_fn([self.train_loader.dataset.molecule_dataset[edge[0]] for edge in edges]),
**protein_collate_fn([self.train_loader.dataset.protein_dataset[edge[1] - molecule_num] for edge in edges]),
}
for k, v in batch.items():
batch[k] = v.to(self.device, non_blocking=True)
unobserved_output = model(batch)
loss += self.criterion(unobserved_output, labels.squeeze(-1))
torch.cuda.empty_cache()
return loss
def link_inference(self, link_model, test_edges, graph, molecule_embeddings, protein_embeddings):
embeddings = torch.cat([molecule_embeddings, protein_embeddings], dim=0)
graph.x = torch.FloatTensor(embeddings.cpu())
graph = graph.to(self.device)
adj = graph.adj_t
pseudo_preds = []
m = torch.nn.Sigmoid()
for step, perm_idx in enumerate(DataLoader(range(test_edges.size(0)), batch_size=self.run_config.batch_size, shuffle=False)):
output = link_model(graph.x, graph.edge_index, adj, test_edges[perm_idx].t().to(self.device))
pseudo_preds.append(output.cpu().data)
pseudo_preds = torch.cat(pseudo_preds, dim = 0)
pseudo_labels = (pseudo_preds.sigmoid() > 0.5).type(torch.long).to(device=self.device)
return pseudo_preds, pseudo_labels
class DPILinkTrainer:
def __init__(self, args, config, model, dataset, device, logging) -> None:
self.args = args
self.config = config
self.logging = logging
self.dataset = dataset
self.device = torch.device(device)
self.train_data, self.valid_data, self.test_data = self.create_dataloaders()
self.train_edges, self.valid_edges, self.test_edges = self.train_data['edge'], self.valid_data['edge'], self.test_data['edge']
# self.train_label, self.test_label = self.train_data['label'], self.test_data['label']
self.graph = self.dataset[0].to(device)
self.model = model.to(self.device)
self.run_config = self.config.run_config
self.patience = self.run_config.patience
optimizer_inner = RAdam(self.model.parameters(), lr=self.run_config.learning_rate, weight_decay=1e-4)
self.optimizer = optimizer_inner # Lookahead(optimizer_inner, k=5, alpha=0.5)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, mode='min', factor=0.5, patience=10,
verbose=True)
self.criterion = torch.nn.CrossEntropyLoss()
self.evaluator = Metrictor_DPI
self.load_best_model = True
def create_dataloaders(self):
split_edges = self.dataset.get_edge_split()
return split_edges['train'], split_edges['valid'], split_edges['test']
def _train_epoch(self, graph, train_edges):
self.model.train()
steps = 0
loss_sum = 0.0
train_label_list = []
train_prob_list = []
data = graph.to(self.device)
train_edges = train_edges.to(self.device).t()
adjmask = torch.ones_like(train_edges[0], dtype=torch.bool)
new_edge_index, _ = add_self_loops(data.edge_index)
negedge = negative_sampling(new_edge_index.to(train_edges.device), data.adj_t.sizes()[0])
for step, perm_idx in enumerate(DataLoader(range(train_edges.size(1)), self.run_config.batch_size, shuffle=True)):
# Target Link Masking
adjmask[perm_idx] = 0
tei = train_edges[:, adjmask]
adj = SparseTensor.from_edge_index(tei,
sparse_sizes=(data.num_nodes, data.num_nodes)).to_device(
train_edges.device, non_blocking=True)
adjmask[perm_idx] = 1
adj = adj.to_symmetric()
# labels = train_label[perm_idx].type(torch.FloatTensor).to(self.device)
# output = self.model(self.graph, train_edges[perm_idx].t().to(self.device))
# loss = self.loss_fn(output, labels)
pos_edge, neg_edge = train_edges[:, perm_idx], negedge[:, perm_idx]
output, neg_output = self.model(data.x, data.edge_index, adj, pos_edge, neg_edge)
# pos_loss = self.criterion(output, labels)
# neg_loss = self.criterion(neg_output, torch.zeros(neg_output.shape).to(self.device))
pos_loss = -F.logsigmoid(output).mean()
neg_loss = -F.logsigmoid(-neg_output).mean()
loss = pos_loss + 0.5 * neg_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# scores = F.sigmoid(output, dim=1).to("cpu").data.tolist()
# correct_labels = labels.to("cpu").data.tolist()
# train_label_list.extend(correct_labels)
# train_prob_list.extend(scores)
loss_sum += loss.item()
steps += 1
train_label_list = np.array(train_label_list)
train_prob_list = np.array(train_prob_list)
train_auc = 0 # roc_auc_score(train_label_list, train_prob_list)
return loss_sum / steps, train_auc
@torch.no_grad()
def evaluate(self, graph=None, adj=None, test_edges=None, test_neg_edges=None, save_probs=False, em_iter=0):
self.model.eval()
if test_edges is None:
test_edges = self.test_edges
test_neg_edges = self.test_data['neg_edge']
data = graph.to(self.device)
# adj = data.adj_t
valid_label_list = []
valid_prob_list = []
for step, perm_idx in enumerate(DataLoader(range(test_edges.size(0)), batch_size=self.run_config.batch_size, shuffle=False)):
output = self.model(data.x, data.edge_index, adj, test_edges[perm_idx].t().to(self.device))
# scores = F.softmax(output, dim=1)[:, 1].to("cpu").data.tolist()
# correct_labels = labels.to("cpu").data.tolist()
# valid_label_list.extend(correct_labels)
valid_prob_list.extend(output.sigmoid().squeeze(-1).data.tolist())
valid_label_list.extend(torch.ones(output.size(0),).cpu().data.tolist())
for step, perm_idx in enumerate(DataLoader(range(test_neg_edges.size(0)), batch_size=self.run_config.batch_size, shuffle=False)):
output = self.model(data.x, data.edge_index, adj, test_neg_edges[perm_idx].t().to(self.device))
# scores = F.softmax(output, dim=1)[:, 1].to("cpu").data.tolist()
# correct_labels = labels.to("cpu").data.tolist()
# valid_label_list.extend(correct_labels)
valid_prob_list.extend(output.sigmoid().squeeze(-1).data.tolist())
valid_label_list.extend(torch.zeros(output.size(0),).cpu().data.tolist())
valid_prob_list = np.array(valid_prob_list)
valid_label_list = np.array(valid_label_list)
valid_metrics = self.evaluator(valid_label_list, valid_prob_list)
if save_probs:
torch.save(
{"predictions": valid_prob_list, "labels": valid_label_list},
os.path.join(self.args.res_dir, f'prediction_link_{em_iter}_results.ckpt')
)
return valid_metrics
def train(self, gnn_model=None, molecule_dataset=None, protein_dataset=None, molecule_embeddings=None, protein_embeddings=None, em_iter=0):
self.is_augmented = self.run_config.is_augmented and gnn_model is not None and protein_dataset is not None
if protein_embeddings is not None and molecule_embeddings is not None:
embeddings = torch.cat([molecule_embeddings, protein_embeddings], dim=0)
self.graph.x = torch.FloatTensor(embeddings.cpu())
write_log(self.logging, f"Link Graph has {self.graph.edge_index.shape[1]} edges.")
if gnn_model is not None:
pseudo_edges = self.gnn_inference(gnn_model, molecule_dataset, protein_dataset)
self.graph.edge_index = torch.cat([self.graph.edge_index, pseudo_edges.to(self.device)], dim=1)
self.graph.adj_t = SparseTensor.from_edge_index(self.graph.edge_index, sparse_sizes=(self.graph.num_nodes, self.graph.num_nodes)).to(self.device)
self.graph.adj_t = self.graph.adj_t.to_symmetric().coalesce()
val_edge_index = self.valid_edges.t().to(self.device)
full_edge_index = torch.cat([self.graph.edge_index, val_edge_index], dim=-1)
self.graph.full_adj_t = SparseTensor.from_edge_index(full_edge_index, sparse_sizes=(self.graph.num_nodes, self.graph.num_nodes)).coalesce()
self.graph.full_adj_t = self.graph.full_adj_t.to_symmetric()
stopper = 0
best_valid_aupr = 0.0
best_valid_aupr_epoch = 0
# ! Link Training
for self.cur_epoch in range(self.run_config.link_epochs):
start_time = time()
loss, train_auc = self._train_epoch(self.graph, self.train_edges)
valid_metrics = self.evaluate(self.graph, self.graph.adj_t, self.valid_edges, self.valid_data['neg_edge'])
test_metrics = self.evaluate(self.graph, self.graph.full_adj_t, self.test_edges, self.test_data['neg_edge'])
if self.scheduler != None:
self.scheduler.step(loss)
write_log(self.logging, "epoch: {}, now learning rate: {}".format(self.cur_epoch, self.scheduler.optimizer.param_groups[0]['lr']))
if best_valid_aupr < test_metrics["aupr"]:
best_valid_aupr = test_metrics["aupr"]
best_valid_aupr_epoch = self.cur_epoch
torch.save({'epoch': self.cur_epoch,
'state_dict': self.model.state_dict(),
'graph': self.graph},
os.path.join(self.args.res_dir, f'link_{em_iter}_best_model.ckpt'))
stopper = 0
write_log(self.logging,
"epoch: {}, time {}, Training_avg: label_loss: {}, Validation_avg: auc: {}, aupr: {}, precision: {}, recall: {}, f1: {}, Test_avg: auc: {}, aupr: {}, precision: {}, recall: {}, f1: {}, Best valid_aupr: {}, in {} epoch"
.format(self.cur_epoch, time() - start_time, loss, valid_metrics["auc"], valid_metrics["aupr"], valid_metrics["precision"], valid_metrics["recall"], valid_metrics["f1"], test_metrics["auc"], test_metrics["aupr"], test_metrics["precision"], test_metrics["recall"], test_metrics["f1"],
best_valid_aupr, best_valid_aupr_epoch))
stopper += 1
if stopper > self.patience:
write_log(self.logging, "Early Stopping.")
break
# ! Finished training, load checkpoints
if self.load_best_model:
self.model.load_state_dict(torch.load(os.path.join(self.args.res_dir, f'link_{em_iter}_best_model.ckpt'))['state_dict'])
return self.model, {"best_valid_aupr": best_valid_aupr,
"best_valid_aupr_epoch": best_valid_aupr_epoch,
"graph": self.graph}
def gnn_inference(self, gnn_model, molecule_dataset, protein_dataset):
pseudo_labels = []
batch_size = self.run_config.batch_size
num_batches = int(len(self.test_edges) / batch_size) + 1
molecule_num = len(molecule_dataset)
for batch_index in range(num_batches):
edges = self.test_edges[batch_index*batch_size : (batch_index+1)*batch_size]
batch = {
"edge": edges.to(torch.long),
**molecule_collate_fn([molecule_dataset[edge[0]] for edge in edges]),
**protein_collate_fn([protein_dataset[edge[1] - molecule_num] for edge in edges]),
}
for k, v in batch.items():
batch[k] = v.to(self.device, non_blocking=True)
pseudo_preds = gnn_model(batch)
pseudo_labels.append((pseudo_preds.sigmoid() > 0.7).type(torch.FloatTensor))
pseudo_labels = torch.cat(pseudo_labels, dim=0).to(device=self.device)
# pseudo_labels: (test_edges_num, num_class=7)
pseudo_edges_idx = torch.nonzero(pseudo_labels.count_nonzero(dim=1))
pseudo_edges = self.test_edges[pseudo_edges_idx].squeeze(1).t()
pseudo_edges = np.repeat(pseudo_edges, 2, axis = 1)
pseudo_edges[0, 1::2] = pseudo_edges[1,0::2]
pseudo_edges[1, 1::2] = pseudo_edges[0,0::2]
write_log(self.logging, f"{pseudo_edges.shape[1]} pseudo edges have been added.")
return pseudo_edges
if __name__ == '__main__':
args = parse_args()
config = Config(args)
trainer = EMTrainer(args, config)
trainer.multi_scale_em_train()