-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlayers.py
200 lines (163 loc) · 6.83 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import tensorflow as tf
import numpy as np
flags = tf.flags
FLAGS = flags.FLAGS
# global unique layer ID dictionary for layer name assignment
_LAYER_UIDS = {}
def get_layer_uid(layer_name=''):
"""Helper function, assigns unique layer IDs
"""
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
def dropout_sparse(x, keep_prob, num_nonzero_elems):
"""Dropout for sparse tensors. Currently fails for very large sparse tensors (>1M elements)
"""
noise_shape = [num_nonzero_elems]
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse_retain(x, dropout_mask)
return pre_out * (1. / keep_prob)
def weight_variable_glorot(input_dim, output_dim, name=""):
"""Create a weight variable with Glorot & Bengio (AISTATS 2010)
initialization.
"""
init_range = np.sqrt(6.0 / (input_dim + output_dim))
initial = tf.random_uniform([input_dim, output_dim], minval=-init_range,
maxval=init_range, dtype=tf.float32)
return tf.Variable(initial, name=name)
def bais_variable_glorot(output_dim, name=""):
"""Create a weight variable with Glorot & Bengio (AISTATS 2010)
initialization.
"""
init_range = np.sqrt(6.0 / (output_dim))
initial = tf.random_uniform([output_dim], minval=-init_range,
maxval=init_range, dtype=tf.float32)
return tf.Variable(initial, name=name)
class Layer(object):
"""Base layer class. Defines basic API for all layer objects.
# Properties
name: String, defines the variable scope of the layer.
# Methods
_call(inputs): Defines computation graph of layer
(i.e. takes input, returns output)
__call__(inputs): Wrapper for _call()
"""
def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
layer = self.__class__.__name__.lower()
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.vars = {}
logging = kwargs.get('logging', False)
self.logging = logging
self.issparse = False
def _call(self, inputs):
return inputs
def __call__(self, inputs):
with tf.name_scope(self.name):
outputs = self._call(inputs)
return outputs
class GraphConvolution(Layer):
"""Basic graph convolution layer for undirected graph without edge labels."""
def __init__(self, input_dim, output_dim, adj, dropout=0., act=tf.nn.relu, **kwargs):
super(GraphConvolution, self).__init__(**kwargs)
with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = weight_variable_glorot(input_dim, output_dim, name="weights")
self.dropout = dropout
self.adj = adj
self.act = act
def _call(self, inputs):
x = inputs
x = tf.nn.dropout(x, 1-self.dropout)
x = tf.matmul(x, self.vars['weights'])
x = tf.sparse_tensor_dense_matmul(self.adj, x)
outputs = self.act(x)
return outputs
class Dense(Layer):
"""Dense layer."""
def __init__(self, input_dim, output_dim, dropout=0.,
act=tf.nn.relu, placeholders=None, bias=True,
sparse_inputs=False, is_training=True, **kwargs):
super(Dense, self).__init__(**kwargs)
self.dropout = dropout
self.act = act
self.input_dim = input_dim
self.output_dim = output_dim
self.bias = bias
# helper variable for sparse dropout
self.sparse_inputs = sparse_inputs
self.is_training = is_training
with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = tf.get_variable('weights', shape=(input_dim, output_dim),
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer(),
regularizer=tf.contrib.layers.l2_regularizer(FLAGS.weight_decay))
if self.bias:
self.vars['bias'] = tf.Variable(tf.zeros([output_dim], dtype=tf.float32), name='bias')
if self.logging:
self._log_vars()
def _call(self, inputs):
x = inputs
if self.sparse_inputs:
output = tf.sparse_tensor_dense_matmul(x, self.vars['weights'])
else:
output = tf.matmul(x, self.vars['weights'])
# bias
if self.bias:
output += self.vars['bias']
if self.is_training is not None:
bn = tf.layers.batch_normalization(output, training=self.is_training)
return self.act(bn)
else :
return self.act(output)
class InnerDecoder(Layer):
'''
Decoder model layer for link prediction and attributes reconstructions.
'''
def __init__(self, input_dim, dropout=0., act=tf.nn.sigmoid, **kwargs):
super(InnerDecoder, self).__init__(**kwargs)
self.input_dim = input_dim
self.dropout = dropout
self.act = act
def _call(self, inputs):
z_adj, z_express = inputs
z_adj = tf.nn.dropout(z_adj, 1 - self.dropout)
z_adj_t = tf.transpose(z_adj)
x = tf.matmul(z_adj, z_adj_t)
edge_outputs = tf.reshape(self.act(x), [-1])
z_express = tf.nn.dropout(z_express, 1 - self.dropout)
y = tf.matmul(z_express, z_adj_t)
express_outputs = self.act(y)
return edge_outputs, express_outputs
class MultiplyLayer(Layer):
'''
'''
def __init__(self, num_nodes, dropout=0., act=tf.nn.relu, bias=True, **kwargs):
super(MultiplyLayer, self).__init__(**kwargs)
self.num_nodes = num_nodes
self.dropout = dropout
self.act = act
self.bias = bias
with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = tf.get_variable('weights', shape=(self.num_nodes, self.num_nodes),
dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer(),
regularizer=tf.contrib.layers.l2_regularizer(FLAGS.weight_decay))
if self.bias:
self.vars['bias'] = tf.Variable(tf.zeros([self.num_nodes], dtype=tf.float32), name='bias')
def _call(self, inputs):
z_express, z_adj = inputs
output = tf.multiply(self.vars['weights'], z_adj)
output = tf.matmul(z_express, output)
if self.bias:
output = tf.add(output, self.vars['bias'])
return self.act(output)